Это опасно выполнять для компьютера общего назначения. Если на компьютере полностью будут исчерпаны оперативная память и область подкачки, ядро Linux запускает подавитель OOM (out-of-memory, нехватка памяти), чтобы прервать процесс и освободить некоторое количество памяти. Вы, безусловно, не захотите, чтобы это случилось с вашими приложениями. С другой стороны, высокопроизводительные серверы содержат сложные системы слежения и выравнивания нагрузки, чтобы никогда не оказаться в опасной зоне.
Из главы 8 вы узнаете подробнее о том, как работает система памяти.
4.4. Заглядывая вперед: диски и пространство пользователя
В относящихся к дискам компонентах системы Unix границы между пространством пользователя и пространством ядра довольно сложно определить. Как вы уже видели, ядро оперирует блочным вводом-выводом от устройств, а инструменты из пространства пользователя способны использовать блочный ввод-вывод с помощью файлов устройств. Тем не менее пространство пользователя, как правило, применяет блочный ввод-вывод только при инициализации таких операций, как создание разделов, файловых систем и области подкачки. В нормальном режиме пространство пользователя задействует только поддержку файловой системы, которая обеспечивается ядром в верхнем слое блочного ввода-вывода. Подобным образом ядро управляет и множеством мелких деталей, когда оно имеет дело с областью подкачки в системе виртуальной памяти.
В следующей части этой главы вкратце рассказано про внутренние части файловой системы Linux. Это более сложный материал, и вам определенно нет необходимости знать его, чтобы продолжить чтение книги. Переходите к следующей главе, чтобы начать изучение процесса загрузки системы Linux.
4.5. Внутри традиционной файловой системы
Традиционная файловая система Unix содержит два основных компонента: пул блоков данных, где можно хранить данные, и базу данных, которая управляет пулом данных. В основу базы данных положена структура данных inode.
Имена файлов и каталогов также реализованы в виде дескрипторов inode. Дескриптор каталога содержит перечень имен файлов и соответствующих ссылок на другие дескрипторы.
Чтобы привести реальный пример, я создал новую файловую систему, смонтировал ее и сменил каталог на точку монтирования. После этого добавил несколько файлов и каталогов с помощью таких команд (попробуйте выполнить это самостоятельно на флеш-накопителе):
$ mkdir dir_1
$ mkdir dir_2
$ echo a > dir_1/file_1
$ echo b > dir_1/file_2
$ echo c > dir_1/file_3
$ echo d > dir_2/file_4
$ ln dir_1/file_3 dir_2/file_5
Обратите внимание на то, что я создал каталог dir_2/file_5 в виде жесткой ссылки на каталог dir_1/file_3. Это означает, что данные два имени файлов на самом деле представляют один и тот же файл.
Если вы рассмотрите каталоги в этой файловой системе, то ее содержимое выглядело бы так, как показано на рис. 4.4. Реальная разметка файловой системы, как показано на рис. 4.5, не выглядит настолько ясной, как представление на уровне пользователя.
Рис. 4.4. Представление файловой системы на уровне пользователя
Рис. 4.5. Структура дескрипторов файловой системы, показанной на рис. 4.4
В любой расширенной файловой системе (ext2/3/4) нумерация дескрипторов начинается с 2 —
Для проверки ссылки dir_1/file_2 в этой файловой системе ядро выполняет следующие действия.
1. Определяет компоненты пути: за каталогом dir_1 следует компонент с именем file_2.
2. Переходит к корневому дескриптору и его данным о каталогах.
3. Отыскивает в данных о каталогах у дескриптора inode 2 имя dir_1, которое указывает на дескриптор с номером 12.
4. Ищет дескриптор inode 12 в таблице дескрипторов и проверяет, является ли он дескриптором каталога.
5. Следует по ссылке дескриптора inode 12 к информации о каталоге (это второй сверху контейнер в пуле данных).
6. Обнаруживает второй компонент пути (file_2) в данных о каталогах дескриптора inode 12. Эта запись указывает на дескриптор inode с номером 14.
7. Отыскивает дескриптор inode 14 в таблице каталогов. Это дескриптор файла.