[2:0:0:2] disk USB2.0 CardReader MS 0100 /dev/sdd /dev/sg4
[2:0:0:3] disk USB2.0 CardReader SD 0100 /dev/sde /dev/sg5
[3:0:0:0] disk FLASH Drive UT_USB20 0.00 /dev/sdf /dev/sg6
В дополнение к обычному файлу блочного устройства в каждой строке указан файл обобщенного SCSI-устройства (отмечен символом
Зачем может понадобиться обобщенное SCSI-устройство? Ответ обусловлен сложностью кода ядра. Когда задачи становятся более тяжелыми, лучше их вывести за пределы ядра. Представьте запись и чтение CD/DVD. Чтение происходит существенно проще записи, при нем не затрагиваются важные службы ядра. Программа в пространстве пользователя выполнила бы запись чуть менее эффективно, чем служба ядра, однако такую программу гораздо проще создать и поддерживать, чем службу ядра, а ошибки в ней не затронут пространство ядра. Следовательно, чтобы записать оптический диск в системе Linux, мы запускаем программу, которая «разговаривает» с обобщенным SCSI-устройством, таким как /dev/sg1. Однако благодаря простоте чтения, по сравнению с записью, считывание с устройства происходит с помощью специального драйвера sr в ядре.
3.6.4. Методы коллективного доступа к одному устройству
На рис. 3.3 для SCSI-подсистемы Linux показаны две точки доступа (sr и sg) к оптическому приводу из пространства пользователя (опущены все драйверы, которые расположены под самым нижним уровнем SCSI). Процесс А осуществляет чтение с помощью драйвера sr, а процесс Б производит запись с помощью драйвера sg. Однако такие процессы не могут одновременно получать доступ к одному устройству.
Рис. 3.3. Схема драйверов оптического привода
На рис. 3.3 процесс А осуществляет чтение с блочного устройства. Однако действительно ли пользовательские процессы считывают данные подобным образом? Ответ, как правило, отрицательный: нет, напрямую не считывают. Над блочными устройствами есть дополнительные слои, а для жестких дисков — также и дополнительные точки доступа, как вы узнаете из следующей главы.
4. Диски и файловые системы
В главе 3 мы рассмотрели дисковые устройства верхнего уровня, которые делают ядро доступным. В данной главе мы детально расскажем о работе с дисками в Linux. Вы узнаете о том, как создавать разделы дисков, настраивать и поддерживать файловые системы в этих разделах, а также работать с областью подкачки.
Вспомните о том, что у дисковых устройств есть имена вроде /dev/sda, первого диска подсистемы SCSI. Такой тип блочного устройства представляет диск целиком, однако внутри диска присутствуют различные компоненты и слои.
На рис. 4.1 приведена схема типичного диска в Linux (масштаб не соблюден). По мере изучения этой главы вы узнаете, где находится каждый его фрагмент.
Рис. 4.1. Схема типичного диска Linux
Разделы являются более мелкими частями всего диска. В Linux они обозначаются с помощью цифры после названия блочного устройства и, следовательно, получают такие имена, как, например, /dev/sda1 и /dev/sdb3. Ядро представляет каждый раздел в виде блочного устройства, как если бы это был целый диск. Разделы определяются в небольшой области диска, которая называется
примечание
Многочисленные разделы были когда-то распространены в системах с большими дисками, поскольку старые ПК могли загружаться только из определенных частей диска. К тому же администраторы использовали разделы, чтобы зарезервировать некоторое пространство для областей операционной системы. Например, они исключали возможность того, чтобы пользователи заполнили все свободное пространство системы и нарушили работу важных служб. Такая практика не является исключительной для Unix; вы по-прежнему сможете найти во многих новых системах Windows несколько разделов на одном диске. Кроме того, большинство систем располагает отдельным разделом подкачки.
Хотя ядро и позволяет вам иметь одновременный доступ ко всему диску и к одному из его разделов, вам не придется это делать, если только вы не копируете весь диск.
Следующий за разделом слой является
Как можно заметить на рис. 4.1, если вам необходим доступ к данным в файле, вам потребуется выяснить из таблицы разделов расположение соответствующего раздела, а затем отыскать в базе данных файловой системы этого раздела желаемый файл с данными.
Чтобы обращаться к данным на диске, ядро Linux использует систему слоев, показанную на рис. 4.2. Подсистема SCSI и все остальное, описанное в разделе 3.6, представлены в виде одного контейнера. Обратите внимание на то, что с дисками можно работать как с помощью файловой системы, так и непосредственно через дисковые устройства. В этой главе вы попробуете оба способа.