• Транспортный уровень. Определяет характеристики передачи данных для прикладного уровня. Этот уровень содержит проверку целостности данных, порты источника и назначения, а также спецификации по разбиению данных приложения на пакеты (если прикладной уровень еще не выполнил это). Самыми распространенными протоколами транспортного уровня являются TCP (Transmission Control Protocol, протокол управления передачей) и UDP (User Datagram Protocol, протокол дейтаграмм пользователя). Транспортный уровень иногда также называют
• Сетевой или интернет-уровень. Определяет, как перемещать пакеты от хоста-источника к хосту-назначению. Частные правила передачи пакетов через Интернет известны как протокол IP (Internet Protocol, интернет-протокол). Поскольку в этой книге речь пойдет только о сети Интернет, мы на самом деле будем говорить лишь об интернет-уровне. Тем не менее, так как сетевые уровни задуманы как не зависящие от аппаратных средств, можно одновременно настроить несколько независимых сетевых уровней (таких как IP, IPv6, IPX и AppleTalk) на одном хосте.
• Физический уровень. Определяет, как необработанные данные передаются через физический посредник, например сеть Ethernet или модем. Иногда этот уровень называют
Важно понимать структуру сетевого стека, поскольку данные должны пройти через эти уровни минимум дважды, прежде чем достигнут программу на месте назначения. Если, например, вы отправляете данные от хоста A к хосту B, как показано на рис. 9.1, байты покидают прикладной уровень хоста A и перемещаются через транспортный и сетевой уровни хоста A. Затем они попадают вниз, в физический посредник, передаются по нему, после чего поднимаются вверх через различные уровни до прикладного уровня хоста B очень сходным образом. Если что-либо отправляется на интернет-хост через маршрутизатор, то данные пройдут через некоторые (но, как правило, не все) уровни маршрутизатора и всего, что находится между ними.
Иногда уровни странным образом вклиниваются друг в друга, поскольку было бы неэффективно продвигаться по всем уровням последовательно. Например, устройства, которые исторически имели дело только с физическим уровнем, теперь иногда заглядывают в данные транспортного и интернет-уровней, чтобы быстро отфильтровать и проложить маршрут для данных. Не беспокойтесь об этом, пока вы изучаете основы.
Мы начнем с рассмотрения того, как компьютер с Linux подключается к сети, чтобы ответить на вопрос
примечание
Вы, наверное, слышали о другом наборе уровней, известном как модель OSI (Open Systems Interconnection Reference Model). Это модель сети, которая содержит семь уровней и часто используется при обучении и в разработке сетей, однако мы не будем рассматривать ее, поскольку вы будете напрямую работать с четырьмя уровнями, описанными здесь. Чтобы узнать об уровнях больше (и о сетях вообще), обратитесь к книге Эндрю С. Таненбаума (Andrew S. Tanenbaum) и Дэвида Дж. Уэзерола (David J. Wetherall) Computer Networks («Компьютерные сети»), 5-е издание (Prentice Hall, 2010).
9.3. Интернет-уровень
Вместо того чтобы начать с самого низа сетевого стека, физического уровня, мы начнем с сетевого уровня, поскольку его проще понять. Интернет, как мы уже знаем, основан на интернет-протоколе, начиная с версии 4 (IPv4) и заканчивая набирающей силу версией 6 (IPv6). Одним из самых важных аспектов интернет-уровня является то, что он призван быть сетью программного обеспечения, которое не предъявляет специальных требований к аппаратным средствам или операционным системам. Суть в том, что вы можете отправлять и получать интернет-пакеты с помощью любого аппаратного обеспечения, используя любую операционную систему.
Топология Интернета децентрализована; эта сеть составлена из более мелких сетей, называемых
Хост может быть подключен к более чем одной подсети. Как вы видели в разделе 9.1, такой тип хоста называется маршрутизатором, если он может передавать данные из одной подсети в другую (еще один термин для маршрутизатора —