Тем не менее, пока шла разработка проекта OEA, в Центре Андерсона осуществлялись и другие проекты, связанные с ИИ. Они реализовывались под руководством директора по информационным технологиям Криса Белмонта (чья ИТ-служба, как указывалось в аудиторском отчете, практически не участвовала в проекте OEA) и являлись гораздо менее амбициозными и дорогостоящими. Среди них были программы «эксклюзивного медицинского обслуживания», которые дают рекомендации по отелям и ресторанам для семей пациентов, приложение, определяющее пациентов, нуждающихся в помощи с оплатой счетов, а также автоматизированная «когнитивная служба поддержки» для решения ИТ-проблем персонала. После включения рекомендаций в портал для пациентов больницы началась разработка множества новых познавательных проектов. Новые системы способствуют повышению удовлетворенности пациентов и финансовых показателей в больнице, а также сокращению времени, затрачиваемого на ввод данных сотрудниками больницы. Несмотря на неудачу в зондировании возможностей лечения рака, Центр Андерсона ориентирован на внедрение когнитивных технологий и развивает центр компетенции для решения этой проблемы.
Центр Андерсона также не отказался от использования ИИ для диагностики и лечения рака. Еще одна программа зондирования получила название APOLLO (Программа адаптивного, пациент-ориентированного долгосрочного обучения и оптимизации). Она использует машинное обучение для генерации детальных прогностических моделей того, как пациенты с различными геномными профилями и историями болезни реагируют на лечение рака[5]. Хотя проект использует (возможно, не слишком удачно) чересчур общую и громкую терминологию, применявшуюся ранее при описании Oncology Expert Advisor, он опирается на методы машинного обучения, которые отлаживались десятилетиями, и похож на проекты, осуществляемые в ряде других центров исследования рака.
Сингапурский банк DBS – крупнейший банк Юго-Восточной Азии и лидер в использовании технологий для улучшения обслуживания и операционной деятельности. Когда-то его называли «чертовски медленным», но в 2016 г. журнал
DBS хотел получить систему, которая могла бы переваривать различные вводные данные – исследовательские отчеты, новости компании, индикаторы настроений на рынке и существующий портфель клиента, а затем давать рекомендации банковским менеджерам по работе с клиентами и самим клиентам. Но директор по информационным технологиям DBS Дэвид Гледхилл отметил, что технология не готова решить столь серьезную проблему:
Мы начали очень рано, и в то время технология Watson еще не достигла зрелости. Она не была готова стать новейшим разносторонним консультантом по благосостоянию, как планировали и DBS, и IBM. Приступив к реализации этого проекта, мы опередили время. Оглядываясь назад, можно понять, что технология не была достаточно зрелой. Она не была подготовлена для многих из наших сценариев использования. Отчасти проблема заключалась в том, что программное обеспечение не могло понять множество диаграмм и графиков, которые должно было понимать. Кроме того, исследовательские отчеты банка были представлены в различных форматах, а это затрудняло анализ данных системой Watson без особого вмешательства человека. Таким образом, хотя мы и разработали пилотного робота-советника, он был вдвое менее эффективен и продуктивен, чем средний менеджер по работе с клиентами. Мы извлекли из этого урок и остановили проект на ранней стадии.