Конкуренция известных производителей микропроцессоров и новой поросли стартапов за долю быстро растущего рынка искусственного интеллекта вызвала в технологической сфере шквал инноваций и всплеск деловой активности. Некоторые исследователи открывают совершенно новые направления в сфере разработки чипов. Специализированные чипы для глубокого обучения, созданные на основе графических процессоров, оптимизируются с целью ускорения ресурсоемких математических вычислений, выполняемых программами, которые поддерживают глубокие нейронные сети. Новый класс чипов в значительно большей мере имитирует работу мозга, позволяя урезать аппетиты требующего слишком много ресурсов программного слоя и реализовать нейронную сеть на аппаратной основе.
Разрабатываемые «нейроморфные» чипы воплощают аппаратные аналоги нейронов непосредственно в кремнии. IBM и Intel вложили значительные средства в исследования нейроморфных вычислений. Например, экспериментальные чипы Loihi разработки Intel используют 130 000 аппаратных нейронов, каждый из которых может связываться с тысячами других[10]. Одно из важнейших преимуществ ухода от массированных программных вычислений — это энергоэффективность. Человеческий мозг, далеко превосходящий своими возможностями любой существующий компьютер, потребляет лишь около 20 Вт — существенно меньше, чем средняя лампа накаливания. В отличие от него, системы глубокого обучения на основе графических процессоров требуют очень много электричества, и, как будет показано в главе 5, их масштабирование при таком энергопотреблении, скорее всего, невозможно. Нейроморфные чипы, конструкция которых восходит к нейронной сети головного мозга, гораздо менее прожорливы. Intel заявляет, что в некоторых модификациях ее чипы Loihi до 10 000 раз более энергоэффективны, чем традиционные микропроцессоры. После запуска коммерческого производства эти чипы, скорее всего, быстро найдут применение в мобильных и других устройствах, для которых важна энергоэффективность. Ряд специалистов в области ИИ идут намного дальше в своих прогнозах, полагая, что нейроморфные чипы — это будущее искусственного интеллекта. Например, по мнению исследовательской фирмы Gartner, нейроморфные структуры вытеснят графические процессоры в качестве основной аппаратной платформы ИИ к 2025 году[11].
Облачные вычисления как основная инфраструктура ИИ
Современная индустрия облачных вычислений зародилась в 2006 году с вводом в действие платформы Amazon Web Services, или AWS. Amazon, опираясь на свой опыт создания и обслуживания гигантских дата-центров для поддержки онлайновой торговли, решила продавать широкому кругу клиентов гибкий доступ к вычислительным ресурсам. В 2018 году AWS обслуживала более 100 дата-центров в девяти странах мира[12]. Рост облачных сервисов Amazon и ее конкурентов поражает воображение. Согласно недавнему исследованию, сегодня 94 % организаций, от транснациональных корпораций до мелких и средних фирм, пользуются облачными вычислениями[13]. К 2016 году AWS росла настолько быстро, что новые вычислительные ресурсы, добавляемые Amazon к своей системе
До появления облачных провайдеров фирмам и организациям приходилось покупать и обслуживать собственные серверы и программное обеспечение и иметь команду высокооплачиваемых специалистов для поддержки и апгрейда систем. Благодаря облачным вычислениям значительная часть этих задач отдается на аутсорсинг таким провайдерам, как Amazon, способным обеспечить эффективность благодаря эффекту масштаба. Облачные серверы обычно располагаются в огромных зданиях площадью сотни тысяч квадратных метров, стоимостью больше миллиарда долларов. Доступ к облачным сервисам часто предоставляется по запросу, когда клиент пользуется вычислительными мощностями, хранением данных и приложениями столько, сколько нужно, и платит только за потребленные ресурсы.