Вы можете прямо из программы PROBE запустить анализ Фурье для любой изображенной на ее экране временной функции. При выполнении анализа Фурье программа PSPICE исходит из того, что рассчитываемая при моделировании функция периодически повторяется независимо от того, какую ее часть вы в данный момент отобразили на экране PROBE. То есть вы обязательно должны следить за тем, чтобы для исследуемой функции был смоделирован или только один период, или целочисленное кратное количество периодов.[32] В нашем случае с помощью анализа переходных процессов (см. рис. 9.3) было проведено моделирование ровно пятнадцати периодов колебания, следовательно, полученные данные без всяких ограничений подходят для корректного анализа Фурье.
Шаг 3 Запустите анализ Фурье (на низкоскоростных компьютерах его выполнение зачастую занимает много времени) с помощью кнопки
После того как вы приведете в соответствие оси координат частоты (команда Plot→X Axis Settings), должна получиться диаграмма с результатами проведенного анализа, аналогичная той, которую вы видите на рис. 9.4.
Кнопка FFT позволяет не только производить запуск анализа Фурье, но и переключаться по его завершении от изображения временного диапазона к частотной области и наоборот.
Шаг 4 Щелкните несколько раз по кнопке FFT, чтобы понять, как можно с ее помощью переходить от одной диаграммы к другой.
Порой вычисления, которые проводит PSPICE в ходе анализа Фурье, длятся так долго, что у пользователя появляется достаточно времени, чтобы предаться мечтам о более быстром процессоре. И это несмотря на то, что в настоящее время PSPICE для выполнения таких расчетов использует алгоритм Fast Fourier Transformation (FFT), то есть алгоритм быстрого преобразования Фурье (БПФ). А ведь еще десять лет назад, во времена 286-ых процессоров с тактовой частотой 12 МГц, проведение подобных анализов было доступно только тем электронщикам, которые имели доступ к супердорогим ЭВМ.
Для того чтобы ускорить расчеты, можно, конечно, провести анализ Фурье в уменьшенном временном интервале. Теоретически, для выполнения анализа Фурье достаточно и одного единственного периода колебаний. На рис. 9.5 представлен результат анализа уже исследованного вами прямоугольного переменного напряжения (был использован временной интервал всего одного периода — проведено моделирование от 0 до 1 мс). Рассчитанные PSPICE контрольные точки распределены с интервалом в 1/1 мс=1 кГц. На диаграмме, изображенной на рис. 9.4, расстояние между контрольными точками анализа составляет примерно 1/(15×1 мс)=66.6 Гц.
По вашему желанию программа PSPICE может представить данные анализа Фурье и в табличной форме, записав их в выходной файл. Однако тогда вам необходимо заранее (еще при проведении предварительной установки анализа переходных процессов) выставить флажок рядом с опцией Enable Fourier (Разрешить анализ Фурье). Установки, показанные на рис. 9.6, предполагают, что будет произведен расчет данных двадцати высших гармоник напряжения на резисторе V(R1:2), а результаты станут отображаться в выходном файле в табличной форме.
Шаг 5 Проведите предварительную установку анализа переходных процессов по образцу на рис. 9.6 и запустите процесс моделирования схемы. По завершении моделирования откройте выходной файл и найдите в нем результаты спектрального анализа:
FOURIER COMPONENTS OF TRANSIENT RESPONSE
V($N_0001)
DC COMPONENT = -9.900990E-03
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.273E+00 1.000E+00 -8.911E-01 0.000E+00
2 2.000E+03 1.981E-02 1.556E-02 -9.178E+01 -9.089E+01
3 3.000Е+03 4.246Е-01 3.334Е-01 -2.673Е+00 -1.782Е+00
4 4.000Е+03 1.984Е-02 1.558Е-02 -9.356Е+01 -9.267Е+01
5 5.000Е+03 2.549Е-01 2.002Е-01 -4.455Е+00 -3.564Е+00
6 6.000Е+03 1.989Е-02 1.562Е-02 -9.535Е+01 -9.446Е+01