Клетки, не содержащие желтка / Объем (в кубич. микронах)
Амеба … 4,2 · 106
Клетка печени человека … 1750
Эритроцит (красное кровяное тельце) человека … 90
Сперматозоид человека … 17
Самая большая бактерия … 7
Самая маленькая бактерия … 0,02
И снова — посмотрите, как велик диапазон. Амеба (сравнительно огромный одноклеточный организм) во столько же раз больше самой маленькой бактерии (тоже самостоятельного одноклеточного организма), во сколько раз самый большой взрослый кит больше самой маленькой разновидности неполовозрелой землеройки. Разница между самой большой и самой маленькой бактериями подобна разнице между большим слоном и ребенком.
Ну, а теперь зададимся вопросом: каким же образом все сложные процессы жизнедеятельности могут быть втиснуты в крошечную бактерию, которая в 200 миллионов раз меньше простой амебы?
Здесь снова перед нами встает проблема компактности, и мы должны задержаться на ней, чтобы подумать о единицах измерения. Когда мы рассматривали мозг, принимая за единицу меры килограмм, он представлялся нам сравнительно небольшим куском живой ткани. Когда мы стали оценивать мозг по числу клеток, обнаружилась его исключительная сложность. Вот так же, рассматривая клетки, давайте перестанем мерить их кубическими микронами и начнем оценивать по числу содержащихся в них атомов и молекул.
В одном кубическом микроне протоплазмы содержится около 40 миллиардов молекул. Следовательно, если выразить данные предыдущей таблицы в молекулах, то мы получим следующую картину:
Клетка / Число молекул
Амеба … 170 · 1015
Клетка печени человека … 70 · 1012
Эритроцит человека … 3,6 · 1012
Сперматозоид человека … 680 · 109
Самая большая бактерия … 280 · 109
Самая маленькая бактерия … 800 · 106
Конечно, было бы очень соблазнительно сказать, что молекула — это такая же единица клетки, как клетка — единица многоклеточного организма. Тогда в дальнейшем мы могли бы утверждать, что с точки зрения молекулярного состава амеба в 17 миллионов раз сложнее, чем человеческий мозг с точки зрения клеточного состава! С этих позиций нас теперь не удивляет, что вся сложность жизни вмещается в амебную клетку.
Однако здесь есть свое «но». Протоплазма почти целиком состоит из молекул воды, Н2О. Они, видимо, необходимы для жизни, но служат главным образом в качестве «фона». Они не являются характерными молекулами жизни.
К числу молекул жизни относятся сложные макромолекулы, в состав которых входят азот и фосфор; это белки, нуклеиновые кислоты и фосфолипиды. На все эти макромолекулы приходится всего 1/10 000 общего числа молекул живой ткани.
(Заметьте, я не говорю, будто эти макромолекулы составляют только 1/10 000 веса живой ткани; речь идет только о числе молекул.) Все макромолекулы гораздо тяжелее молекул воды. Средняя молекула белка, например, тысячи в две раз тяжелее молекулы воды. В комбинации из 2000 молекул воды и 1 средней белковой молекулы на белковые молекулы будет приходиться очень незначительная часть (1/2001 общего числа молекул), а вес белка будет составлять половину общего веса.
Теперь пересмотрим нашу таблицу вновь:
Клетка / Число макромолекул
Амеба … 17 · 1012
Клетка печени человека … 7 · 109
Эритроцит человека … 360 · 106
Сперматозоид человека … 68 · 106
Самая большая бактерия … 28 · 106
Самая маленькая бактерия … 80 · 103
Итак, у нас есть все основания говорить, что средняя клетка человеческого тела с точки зрения молекулярного состава действительно не менее сложна, чем человеческий мозг с точки зрения клеточного состава, причем если бактерия значительно проще мозга, то амеба значительно сложнее!
Но и самые простые бактерии исключительно быстро растут и делятся с великим рвением, а расти и делиться с химической точки зрения не так-то просто. Такая бактерия — а ее едва можно разглядеть в хороший микроскоп — является деятельной, самостоятельной и сложной химической лабораторией.
Из 80 000 макромолекул самой маленькой бактерии около 50 000 приходится на ферменты, катализирующие различные химические реакции. Если в клетке постоянно протекает почти 2000 различных химических реакций, необходимых для ее роста и размножения, то тогда на каждую реакцию приходится в среднем 25 ферментов.
Завод, на котором производится 2000 машинных операций (при условии что каждую машину обслуживают 25 рабочих), справедливо считается предприятием со сложным производством. И вот также сложна даже самая маленькая бактерия.