Читаем Вертолёт, 2010 №04, 2011 №01 полностью

Несущий винт вертолета проектируется, в первую очередь, для обеспечения висения, перемещений у земли с небольшими скоростями и достижения необходимых величин статического и динамического потолка. По результатам исследований, у современных вертолетов заданные летные данные могут быть получены, если скорость обтекания потоком воздуха концевых сечений скоростных профилей лопастей будет равна 220-230 м/с. Для реализации такой скорости на несущем винте требуется почти в 100 раз уменьшить частоту вращения свободных турбин двигателей. Это обеспечивается механической трансмиссией и выбором передаточного отношения ее главного редуктора.

В полете мощность двигателей NНВ , потребляемая несущим винтом, расходуется на обеспечение его вращения для создания необходимой величины тяги Т = = Gпол и пропульсивной силы:

При этом NНВ = Ni + Np где Ni и Np - индуктивная и профильная составляющие мощности.

По результатам исследований, индуктивные затраты мощности на режиме висения составляют 73-78%, на средних скоростях – 40% и уменьшаются до 13% на максимальной скорости полета вертолета.

Вредное сопротивление ненесущих частей вертолета с ростом скорости увеличивается по квадратной параболе, а потребная мощность двигателей на его преодоление – по кубической параболе. Потери мощности на преодоление вредного сопротивления составляют 15-10% на средних скоростях и 40-35% на максимальной скорости полета. Профильные потери мощности на вращение несущего винта на висении составляют 22-27%, а на максимальной скорости полета – 50% и более. При этом критическое число Мкр концевых сечений лопастей на относительном радиусе 0,9-1,0 должно быть не менее 0,9.

Исследования также показали, что на режиме полета

потребная мощность на вращение несущего винта увеличивается из-за проявления эффекта сжимаемости воздуха на 15-18%. Если число М полета вертолета достигает значения Мкр + 0,15, то увеличение потребной мощности силовой установки составит уже около 30%.

Приоритетными летными характеристиками для транспортно-пассажирского вертолета являются дальность полета L с заданной коммерческой нагрузкой, оптимальная крейсерская скорость полета Vкр и минимально возможный километровый расход топлива q. Минимизировать q на крейсерских режимах полета вертолета можно за счет снижения потерь мощности на преодоление профильного сопротивления НВ путем уменьшения его частоты вращения ω. Это обеспечивается регуляторами частоты вращения свободных турбин двигателей. Существующие вертолетные газотурбинные двигатели позволяют уменьшить ω только на 10-12%.

От величины крейсерской скорости зависит как километровый расход топлива, так и дальность полета ЛА. В связи с этим необходимо выявить возможности НВ для реализации максимально возможных значений крейсерских скоростей винтокрылых аппаратов.

Факторы, ограничивающие скорость полета

Дальнейшее увеличение скорости полета вертолета после достижения Мкр + + 0,15 сопровождается интенсивным ростом волнового сопротивления на лопастях НВ. Для вращения НВ и преодоления его профильного сопротивления в этом случае требуется значительное увеличение мощности силовой установки. Именно в этом заключается физический и экономический смысл ограничения скорости полета транспортно-пассажирского вертолета. Увеличение его крейсерской скорости до 300 км/ч и более сопряжено с нерациональным использованием мощности двигателей, что приводит к повышенным километровым расходам топлива, увеличению потребного запаса топлива, уменьшению веса перевозимого груза и дальности полета.

По мере увеличения скорости полета вертолета и возрастания полной аэродинамической силы на НВ возникают, а затем расширяются зоны повышенных, критических и закритических углов атаки элементов сечений отступающих лопастей при их вращении и связанное с этим явление срыва потока воздуха.

Негативность зон срыва воздуха на НВ проявляется в увеличении напряжений в лопастях, шарнирных моментов и потребных усилий в цепях управления, в росте вибрации аппарата, его разбалансировке и ухудшении управляемости. Кроме того, вносимая в динамически нагруженные элементы конструкции вертолета (лопасти, втулка, автомат перекоса, элементы системы управления НВ) повреждаемость более интенсивно уменьшает их ресурс. Это является дополнительным фактором, ограничивающим скорость вертолета.

Перейти на страницу:

Похожие книги

«Если», 2000 № 11
«Если», 2000 № 11

ФАНТАСТИКАЕжемесячный журналСодержание:Аллен Стил. САМСОН И ДАЛИЛА, рассказКир Булычёв. ПОКОЛЕНИЕ БРЭДБЕРИ, предисловие к рассказуМаргарет Сент-Клер. ДРУГАЯ ЖИЗНЬ, рассказСергей Лукьяненко. ПЕРЕГОВОРЩИКИ, рассказВидеодром*Герой экрана--- Дмитрий Байкалов. ИГРА НА ГРАНИ, статья*Рецензии*Хит сезона--- Ярослав Водяной. ПОРТРЕТ «НЕВИДИМКИ», статья*Внимание, мотор!--- Новости со съемочной площадкиФриц Лейбер. ГРЕШНИКИ, романЛитературный портрет*Вл. Гаков. ТЕАТР НА ПОДМОСТКАХ ВСЕЛЕННОЙ, статьяКим Ньюман. ВЕЛИКАЯ ЗАПАДНАЯ, рассказМайкл Суэнвик. ДРЕВНИЕ МЕХАНИЗМЫ, рассказРозмари Эджхилл. НАКОНЕЦ-ТО НАСТОЯЩИЙ ВРАГ! рассказКонсилиумЭдуард Геворкян. Владимир Борисов: «ЗА КАЖДЫМ МИФОМ ТАИТСЯ ДОЛЯ РЕАЛЬНОСТИ» (диалоги о фантастике)Павел Амнуэль. ВРЕМЯ СЛОМАННЫХ ВЕЛОСИПЕДОВ, статьяЕвгений Лукин. С ПРИВЕТОМ ИЗ 80-Х, эссеАлександр Шалганов. ПЛЯСКИ НА ПЕПЕЛИЩЕ, эссеРецензииКрупный план*Андрей Синицын. В ПОИСКАХ СВОБОДЫ, статья2100: история будущего*Лев Вершинин. НЕ БУДУ МОЛЧАТЬ! рассказФантариумКурсорPersonaliaОбложка И. Тарачкова к повести Фрица Лейбера «Грешники».Иллюстрации О. Васильева, А. Жабинского, И. Тарачкова, С. Шехова, А. Балдин, А. Филиппова. 

МАЙКЛ СУЭНВИК , Павел (Песах) Рафаэлович Амнуэль , Розмари Эджхилл , Сергей Васильевич Лукьяненко , Эдуард Вачаганович Геворкян

Фантастика / Журналы, газеты / Научная Фантастика