Несмотря на то что частотный и байесовский типы мышления по некоторым вопросам сходятся, между ними остается философское различие в отношении значения вероятности. Многим ученым неприятно рассматривать его как нечто субъективное, хотя благодаря этому становятся возможными многие применения, которые в противном случае запрещены. Если вы сторонник частотного подхода, можно оценивать вероятности только тех событий, которые происходят более одного раза, и вопросы вроде «Какова вероятность, что Хиллари Клинтон победит Джеба Буша на следующих президентских выборах?» не имеют ответа, потому что еще не было выборов, в которых сошлись бы эти кандидаты. Для байесовца же вероятность — субъективная степень веры, поэтому он волен выдвигать обоснованные предположения, и анализ суждений делает все его предположения состоятельными.
Байесовский метод применим не только к обучению байесовских сетей и их частных случаев. (Наоборот, вопреки названию, байесовские сети не обязательно байесовские: сторонники частотного подхода тоже могут их обучать, как мы только что видели.) Можно применить априорное распределение к любому классу гипотез — наборам правил, нейронным сетям, программам, — а затем обновлять правдоподобие гипотез при получении данных. Байесовская точка зрения заключается в том, что вы можете выбирать представление, но затем его надо обучать с помощью теоремы Байеса. В 1990-х годах байесовцы произвели эффектный захват Конференции по системам обработки нейронной информации (Neural Information Processing Systems, NIPS) — главного мероприятия для коннекционистских исследований. Зачинщиками были Дэвид Маккей, Редфорд Нил и Майкл Джордан. Маккей, британец и студент Джона Хопфилда в Калифорнийском техническом университете, позднее ставший главным научным консультантом Департамента энергетики Великобритании, показал, как обучать по-байесовски многослойные перцептроны, Нил познакомил коннекционистов с MCMC, а Джордан — с вариационным выводом. Наконец, они указали, что в пределе можно «проинтегрировать» нейроны многослойного перцептрона, оставляя тип байесовской модели, которая на них не ссылается. Вскоре после этого слово «нейронный» в заголовках статей, поданных на конференцию по системам обработки нейронной информации, стало резко уменьшать шансы на публикацию. Некоторые шутили, что надо переименовать NIPS в BIPS — «Байесовские системы обработки информации».
Марков взвешивает доказательства
Байесовцы шли к мировому господству, но тут произошло нечто забавное. Ученые, пользующиеся байесовскими моделями, стали постоянно замечать, что результат получается лучше, если манипулировать вероятностями недозволенными методами. Например, возведение
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии