Другим заметным успехом ранних нейронных сетей стало обучение вождению машины. Беспилотные автомобили впервые привлекли всеобщее внимание на соревнованиях DARPA Grand Challenge[67] в 2004-м и 2005 годах, но за десять с лишним лет до этого ученые Университета Карнеги–Меллон успешно обучили многослойный перцептрон водить машину: узнавать дорогу на видео и поворачивать руль в нужном месте. С небольшой помощью человека — второго пилота — этот автомобиль сумел проехать через все Соединенные Штаты от океана до океана, хотя «зрение» у него было очень мутное (30 × 32 пикселя), а мозг меньше, чем у червяка. (Проект назвали No Hands Across America.) Может быть, это не была первая по-настоящему беспилотная машина, но даже она выгодно отличалась от большинства подростков за рулем.
У метода обратного распространения ошибки несметное количество применений. По мере того как росла его слава, становилось все больше известно о его истории. Оказалось, что, как это часто бывает в науке, метод изобретали несколько раз: французский информатик Ян Лекун и другие ученые наткнулись на него примерно в то же время, что и Румельхарт. Еще в 1980-е годы сообщение о методе обратного распространения отклонили на ведущей конференции по проблемам искусственного интеллекта, потому что, по мнению рецензентов, Минский и Пейперт доказали, что перцептроны не работают. Вообще говоря, Румельхарт считается изобретателем метода скорее по «тесту Колумба»: Колумб не был первым человеком, который открыл Америку, но он был последним. Оказалось, что Пол Вербос, аспирант Гарвардского университета, предложил схожий алгоритм в своей диссертации в 1974 году, а самая большая ирония в том, что Артур Брайсон и Хэ Юци, специалисты по теории управления, добились этого в 1969 году — именно когда Минский и Пейперт публиковали свою книгу Perceptrons! Так что сама история машинного обучения показывает, зачем нам нужны обучающиеся алгоритмы: если бы алгоритмы автоматически выявили, что статьи по теме есть в научной литературе с 1969 года, мы бы не потратили впустую десятилетия, и кто знает, какие открытия были бы сделаны быстрее.
В истории перцептрона много иронии, но печально то, что Фрэнк Розенблатт так и не увидел второго акта своего творения: он утонул в Чесапикском заливе в том же 1969 году.
Живая клетка — прекрасный пример нелинейной системы. Она выполняет все свои функции благодаря сложной сети химических реакций, превращающих сырье в конечные продукты. Как мы видели в предыдущей главе, структуру этой сети можно открыть символистскими методами, например обратной дедукцией, но для построения полной модели работы клетки нужен количественный подход: надо узнать параметры, которые связывают уровень экспрессии различных генов, соотносят переменные окружающей среды с внутренними переменными и так далее. Это непросто, потому что между этими величинами нет простой линейной зависимости. Свою стабильность клетка скорее поддерживает благодаря пересекающимся петлям обратной связи, и ее поведение очень сложно. Для решения этой проблемы хорошо подходит метод обратного распространения ошибки, который способен эффективно учиться нелинейным функциям. Если бы у нас в руках была полная карта метаболических цепочек и мы располагали достаточными данными наблюдений за всеми соответствующими переменными, обратное распространение теоретически могло бы получить подробную модель клетки и многослойный перцептрон предсказывал бы любую переменную как функцию ее непосредственных причин.
Однако в обозримом будущем у нас будет только частичное понимание клеточного метаболизма и мы сможем наблюдать лишь долю нужных параметров. Для получения полезных моделей в условиях недостатка информации и неизбежных противоречий нужны байесовские методы, в которые мы погрузимся в главе 6. То же касается прогнозов для конкретного пациента, если модель уже имеется: байесовский вывод извлечет максимум из неизбежно неполной и зашумленной картины. Хорошо то, что для лечения рака не обязательно понимать функционирование опухолевых клеток полностью и во всех подробностях: достаточно просто обезвредить их, не повреждая нормальные клетки. В главе 6 мы увидим, как правильно сориентировать обучение, обходя то, чего мы не знаем и не обязательно должны знать.
На нынешнем этапе нам известно, что на основе данных и предыдущего знания можно с помощью обратной дедукции сделать вывод о структуре клеточных сетей, однако количество способов его применения порождает комбинаторный взрыв, так что требуется какая-то стратегия. Поскольку метаболические сети были разработаны эволюцией, возможно, симулирование эволюции в обучающихся алгоритмах как раз подойдет. В следующей главе мы посмотрим, как это сделать.
Вильям Л Саймон , Вильям Саймон , Наталья Владимировна Макеева , Нора Робертс , Юрий Викторович Щербатых
Зарубежная компьютерная, околокомпьютерная литература / ОС и Сети, интернет / Короткие любовные романы / Психология / Прочая справочная литература / Образование и наука / Книги по IT / Словари и Энциклопедии