Семья не могла отвлечь Эйнштейна от науки. В это время он постепенно превратился в одного из крупнейших физиков-теоретиков своего времени. Первые опубликованные им труды были посвящены силам взаимодействия между молекулами. Один из них – «Новое определение размеров молекул» – в 1905 году принес Эйнштейну степень доктора физических наук. Этот год был ознаменован многими событиями: в России прокатилась волна восстаний, в Англии был основан футбольный клуб «Челси», в Цусимском сражении Япония разгромила российский флот, Норвегия отделилась от Швеции и обрела долгожданную независимость, во французском городе Амьене скончался Жюль Берн… Но в историю физики этот год вошел как «год чудес» –
Хронологически первыми были исследования по молекулярной физике, результаты которых Эйнштейн изложил в статье «О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты»: Эйнштейн связал движение частиц, наблюдаемое в микроскоп, со столкновениями этих частиц с невидимыми молекулами и предсказал возможность вычислить общие массу и число молекул, находящихся в данном объеме.
Другая его работа «Об одной эвристической точке зрения, касающейся возникновения и превращения света», признанная одной из заложивших основы квантовой теории, объясняла фотоэлектрический эффект как испускание электронов металлической поверхностью под действием электромагнитного излучения в ультрафиолетовом или каком-либо другом диапазоне частот. Развивая идеи Макса Планка, Эйнштейн предположил, что число выбитых с поверхности электронов равно числу фотонов, связанных с яркостью света, а скорость и энергия этих электронов прямо пропорциональны частоте излучения. Исходя из своего представления о фотоэффекте, ученый выдвинул довольно смелое по тем временам предположение о двойственной природе света, который может вести себя и как волна, и как поток частиц. Правильность этой гипотезы впоследствии была подтверждена экспериментально, причем не только для видимых диапазонов светового излучения, но и для рентгеновских и гамма-лучей. Закон фотоэлектрического эффекта, открытый Альбертом Эйнштейном, стал основой фотохимии и позволил объяснить явления флюоресценции и фотоионизации, а также загадочные вариации удельной теплоемкости твердых тел при различных температурах.
В основу третьей работы, вышедшей под скромным названием «К электродинамике движущихся тел», были положены два универсальных допущения. Первое гласило, что все законы физики одинаково применимы для двух наблюдателей, независимо от того, как они движутся относительно друг друга, второе – что свет всегда распространяется в свободном пространстве с одинаковой скоростью, независимо от движения его источника. Из принятых допущений последовали выводы о том, что ни один материальный объект не может двигаться быстрее света; с точки зрения неподвижного наблюдателя размеры движущегося объекта сокращаются в направлении движения, а масса объекта возрастает; и чтобы скорость света была одинаковой для движущегося и неподвижного наблюдателей, движущиеся часы должны идти медленнее. В результате время становится такой же относительной переменной, как и пространственные координаты.
Изложенная в статье теория получила название специальной – то есть частной, в отличие от общей, – теории относительности. В другой статье, вышедшей в конце года, Эйнштейн, исходя из этой теории, вывел знаменитую формулу
Многие ученые сразу приняли специальную теорию относительности: Макс Планк даже включил ее в свой курс лекций, который читал в Берлинском университете. Ученые начали переписываться, и вскоре Макс Планк и Альберт Эйнштейн совместно выстроили релятивистскую (то есть строящуюся на базе теории относительности) динамику и термодинамику, а бывший учитель Эйнштейна по Политехникуму, выдающийся математик Герман Минковский, создал математическую основу теории относительности. К тому же он высказал мысль, что пространство и время должны рассматриваться как единое целое, создав по сути картину четырехмерного мира, где в роли четвертого измерения выступает время.