При налаживании автоматического выключателя следует соблюдать осторожность, поскольку элементы его схемы непосредственно подключены к сети электроснабжения.
Глава 6
УПРАВЛЕНИЕ ТРЕХФАЗНЫМИ ДВИГАТЕЛЯМИ
6.1. Подключение трехфазного двигателя к однофазной сети
Статорные обмотки трехфазного асинхронного двигателя могут быть соединены либо треугольником, либо звездой. При соединении треугольником конец первой обмотки подключается к начал)' второй, конец второй — к началу третьей, конец третьей — к началу первой. При соединении звездой начала всех трех обмоток (или концы) соединяются вместе, образуя нуль, а концы (или начала) образуют выводы трех фаз.
Основная трудность возникает в тех случаях, когда выводы всех трех обмоток присоединены к шести клеммам на колодке без обозначения их начал и концов. Сначала с помощью омметра нужно найти выводы всех обмоток и произвольно присвоить обмоткам номера I, II и III. Затем собирают простую схему, приведенную на рис. 20, соединив обмотки I и II последовательно, подав на них переменное напряжение, а к обмотке III подключают вольтметр переменного тока. Если вольтметр покажет наличие напряжения, примерно равное половине приложенного, значит обмотки I и II соединены согласно и можно считать их началами выводы, помеченные на схеме точками. Если же вольтметр покажет отсутствие напряжения, значит эти обмотки включены встречно, и выводы одной обмотки нужно поменять местами. Для определения начала и конца обмотки III меняют ее местами с обмоткой II и тем же методом определяют ее выводы.
Рис. 20.
Для питания трехфазного асинхронного двигателя от однофазной сети используют конденсатор, сдвигающий фазу напряжения питания одной из обмоток. Подключение фазосдвигающего конденсатора к обмоткам двигателя, соединенным звездой, показано на рис. 21. Подключение фазосдвигающего конденсатора к обмоткам двигателя, соединенным треугольником, показано на рис. 22.
Рис. 21.
Рис. 22.
Емкость конденсатора в микрофарадах определяется по формуле
где
6.2. Трехфазный двигатель в однофазной сети
Невозможность получения номинальной мощности двигателя при использовании фазосдвигающего конденсатора объясняется тем, что такая схема не обеспечивает сдвига фаз в обмотках статора, равного 120°, так как две обмотки включены противофазно и лишь в третьей создается сдвиг фазы, не равный 180°. Поэтому для достижения номинальной мощности двигателя необходим сдвиг фаз каждой обмотки относительно любой другой на 120°. Принципиальная схема, обеспечивающая такой режим, приведена на рис. 23.
Рис. 23.
Устройство представляет собой резистивно-индуктивно-емкостной преобразователь однофазного напряжения сети в трехфазное и пригоден для питания двигателей мощностью до 2,5 кВт. Он содержит дроссель с воздушным зазором и RC-цепи, создающие сдвиг фаз обмоток двигателя, равный 120°. Конденсаторы С1 и С2 — частотные, типа МБГЧ или К42-19. При значениях элементов, указанных на схеме, выходная мощность преобразователя Р = 1 кВт. Для этого дроссель содержит 600 витков (Wl = W2 = 150 витков, W3 = 300 витков) провода ПЭВ диаметром 1,4 мм и Ш-образный сердечник с сечением среднего керна 16 см2. Воздушный зазор подбирается таким, чтобы индуктивное сопротивление дросселя (всей обмотки) на частоте 50 Гц равнялось 110 Ом.
Для других значений мощности можно пересчитать элементы схемы по формулам:
C1 = 80P; C2 = 40P; R1 = 140/P; W = 600/P; XL = 110/P; S = 16P; d = 1,4P,
где мощность
Глава 7
ЭЛЕКТРОННЫЕ ИГРЫ
7.1. Кто сильнее? [18]