При использовании в электронных звонках микросхем телефонных вызывных устройств достигаются простота, малые габариты и потребление энергии, возможность регулирования уровня громкости. Принципиальная схема квартирного звонка на одной из таких микросхем показана на рис. 22.
Рис. 22.
Потребляемый звонком ток от сети переменного тока напряжением 220 В не превышает 7 мА. В качестве звукоизлучателя BQ1 можно применить пьезокерамический преобразователь, обеспечивающий громкое звучание, или установить плату в корпусе абонентского громкоговорителя. Из-за бестрансформаторного питания нужно принять меры безопасности при налаживании и эксплуатации звонка.
5.3. Трели вместо звонка
В телефонном аппарате отключается электромагнитный звонок и вместо него устанавливается предлагаемое устройство (см. рис. 23), которое по звучанию напоминает соловьиную трель. Благодаря наличию конденсаторов С3, С4 от линии поступает только сигнал вызова, при котором напряжение на выходе моста составляет около 14 В. Тон трели определяется параметрами цепи C1, R1. Излучателем ВА может служить телефонный капсюль.
Транзистор МП37 можно заменить на КТ315, а МП42 — на КТ361 (оба — с любым буквенным индексом)
Рис. 23.
5.4. Квартирный звонок — из музыкальной открытки
С помощью схемы, приведенной на рис. 24, музыкальную открытку можно превратить в музыкальный звонок.
Музыкальная открытка представляет собой генератор мелодии в микросхемном исполнении. Два ее вывода предназначены для подачи питания, другие два — выход звукового сигнала. При замыкании звонковой кнопки SB1 выпрямленное напряжение через параметрический стабилизатор R1, VD1 подается на генератор открытки (узел А1). С выхода генератора сигнал мелодии через резистор R4 поступает на усилитель звуковой частоты, собранный на транзисторах VT3-VT5 с излучателем ВА1. Начинает звучать мелодия.
Рис. 24.
Выпрямленное напряжение также поступает на реле времени. Быстро заряжается конденсатор С3, отпираются транзисторы VT1, VT2 и срабатывает реле К1. Контактами К1.1 оно блокирует кнопку SB1, а контактами К1.2 снимает питание с конденсатора С3, который начинает разряжаться через резистор R2 и эмиттерные переходы транзисторов. После разряда конденсатора транзисторы запираются, реле отпускает, звучание мелодии прекращается, силовой трансформатор отключается от сети, а контакты К1.2 замыкаются. Схема вернулась в исходное состояние.
Понижающий трансформатор Т1 и динамическая головка ВА1 использованы от трехпрограммного громкоговорителя ПТ209. Реле РЭС48, паспорт РС4.590.202. Расположение деталей на печатной плате показано на рис. 25.
Рис. 25.
Глава 6
ЭЛЕКТРОННЫЕ ТЕРМОМЕТРЫ
6.1. Медицинский электротермометр
С помощью предлагаемого электрического термометра можно измерить температуру в любой точке тела с погрешностью ±0,1 °C. В качестве чувствительного элемента выбран термистор КМТ-14, включенный в одно из плеч моста постоянного тока (см. рис. 26). К диагонали моста подключен микроамперметр М-130 с током полного отклонения -5…0…+5 мкА. Для измерении температуры переменным резистором R7, который снабжен шкалой, устанавливают баланс моста, и по шкале производят отсчет. Время измерения не превышает 5 с. Термистор подключают к прибору свитой парой проводов. Питание моста осуществляется двумя батареями 3336, соединенными последовательно.
При градуировке термометра сначала переменными резисторами R5 и R8 устанавливают пределы измерения от 34,5 до 42 °C для крайних положений потенциометра R7, после чего наносят деления шкалы. При этом пользуются лабораторным термометром с пределами измерения 0-50 °C и ценой деления 0,1 °C.
Рис. 26.
6.2. Термометр с линейной шкалой
Электронные термометры, использующие термисторные датчики, обычно обладают нелинейной шкалой, градуировка которой весьма трудоемка. Линейную шкалу термометра можно получить, используя в качестве датчика полупроводниковый диод.
Схема такого термометра показана на рис. 27. Пределы измерения температуры прибора от 0 до +50 °C с погрешностью не более ±0,3 °C.
Рис. 27.