Читаем В поисках похищенной марки полностью

Как всегда, я не придавал никакого значения Единичкиной болтовне, понимая, что всё это было сказано ею просто так, от избытка энергии. Не могла же она и в самом деле тремя взмахами ножниц так точно разделить треугольник на пять частей, да ещё в таких последовательных отношениях: один к двум, ещё раз к двум, затем к трём и, наконец, к четырём.

Однако проверять её у меня охоты не было. Мы расплатились, но, выйдя из магазина, вдруг увидели, что манипуляции Единички заняли не так уж мало времени.

— Как бы чего не вышло с мини-Джерамини! — забеспокоилась Единичка. — Не вернуться ли нам за сынком, прежде чем двинуться дальше на поиски папаши?

Мы поспешили в кафе. Увы! Мини-Джерамини там уже не было.

— Как вы смели отпустить мальчика одного?! — напустился я на хозяина.

— Но он ушёл не один, — возразил тот, разводя руками. — За ним явился его законный отец, которого я давно знаю. Он очень торопился, сел в машину и уехал в неизвестном направлении.

Тут я пришёл в отчаяние, где и пребываю до настоящего времени. Потому дальнейшие сообщения откладываю до более благоприятного настроения.

<p><emphasis>ДВАДЦАТЬ ЧЕТВЁРТОЕ ЗАСЕДАНИЕ КРМ</emphasis></p>

решили провести на свежем воздухе, так сказать шутя-гуляючи. День был морозный, солнечный. Приятно было не спеша пройтись по тихим переулкам старого Арбата.

Так уж получилось, что это заседание стало как бы продолжением предыдущего, внеочередного: оно началось с разбора любопытных числовых зависимостей.

— Как вы думаете… — спросил президент, который шёл пятясь, чтобы видеть всю нашу компанию разом. — Как вы думаете, какое число меньше: 165 или 732? — И тут же. сам себе ответил: — Ясно, 165. Значит, Магистр не ошибся, выбрав верблюда с табличкой «165». А Единичка и впрямь транжирка.

Тут он наскочил на прохожего и долго извинялся, после чего продолжал путь более удобным способом.

— Не забывай, — сказала Таня, — что 165 вовсе не обозначало плату за проезд. Чтобы узнать цену, надо было с этим числом произвести ещё целый ряд манипуляций.

— Хоть бы и так, — хорохорился Нулик. — Все равно самое большое число, которое получится от перестановок цифр в числе 165, это 651. А 651 как-никак меньше, чем число 732, которое выбрала Единичка!

— А ведь правда… — раздумчиво протянул Сева. — Даже наименьшее число, которое получается от перестановок цифр 7, 3 и 2, — число 237 и то больше числа 165.

— Эх вы, теоретики! — поддразнила Таня. — Лучше подсчитайте, что должен был заплатить Магистр за своего верблюда и что Единичка — за своего.

— Это мы могим! — весело согласился президент и принялся писать веточкой на снегу. — Сперва сделаем все возможные перестановки цифр в числе 165. Вот они: 165, 156, 561, 516, 651 и 615. Теперь сложим эти числа. Получим… Не мешайте, а то я собьюсь… получим 2664. Проверим…

— И проверять нечего, все верно, — торопила Таня.

— Теперь подсчитаем, что должна была заплатить Единичка, — сказал Сева. — Вот перестановки цифр числа 732: 732, 723, 273, 237, 327 и 372. Сложим их и получим… что такое! Тоже 2664.

— В чём же дело? — недоумевал президент. — Выходит, в этом случае любое трехзначное число даст один и тот же результат? Или, может быть, 165 и 723 — числа специально подобранные?

— Уж конечно, специально, — сказала Таня.

— Вот это да! Значит, проезд на любом верблюде стоил одинаково. Но как же удалось подобрать такие числа?

— А ты посмотри на них внимательней, — посоветовала Таня. — Не найдётся ли у них какого-нибудь общего признака?

— Найдётся! — отвечал президент весьма язвительно. — Все цифры у них разные.

— Цифры действительно разные, — подтвердила Таня, — зато сумма этих цифр одна и та же: 12.

— Верно! — обрадовался Нулик. — 1+6+5=12. И 7+3+2 тоже равно двенадцати. Может быть, то же свойство было и у всех других чисел на верблюжьих табличках?

— Очень возможно. Недаром Единичка сказала, что погонщики в Террапантере — народ справедливый.

— И всё-таки… — Нулик сделал непреклонное лицо, — всё-таки я требую доказательства.

— Сей момент, ваше президентство! — насмешливо поклонилась Таня. — Будет сделано. Запишем любое трехзначное число в общем виде. Это 100a+10b+c. Понятно?

— Что за вопрос? Конечно! Здесь a — число сотен, b — число десятков, c — число единиц.

— Гениально! Теперь сделаем в этом числе все возможные перестановки цифр. Напишем их сразу столбиком, а потом сложим:

Не желаете ли, ваше президентство, преобразовать эту сумму? — спросила Таня.

— Желаю, — отвечал его президентство без особого энтузиазма. — Я бы… я бы вынес 2(a+b+c) за скобки.

— Совершенно с вами согласна. Получится при этом

2(a+b+c)(100+10+1).

— А это все равно что 222(a+b+c), — подсчитал Нулик. — Но что из этого следует?

— Только то, что сумма перестановок зависит не от самого числа, а от суммы его цифр. И значит, все трехзначные числа с одинаковой суммой цифр в этом случае всегда будут давать одно и то же число.

Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей