Читаем В поисках похищенной марки полностью

— Это не стрелка вертелась. Это Единичка повернула карту на 90 градусов. А стрелка компаса всегда направлена в одну и ту же сторону — одним концом на северный магнитный полюс Земли, другим — на южный.

— Полюс, это там, где все меридианы пересекаются? — спросил Нулик, желая, очевидно, похвастаться своей эрудицией.

— Меридианы пересекаются на географическом полюсе, — сказал Олег, — а магнитный полюс, на который указывает стрелка компаса, чуть-чуть с ним не совпадает. Так что смешивать полюс географический с магнитным не стоит… Но вернёмся всё-таки к Единичкиной задаче. По-моему, очень любопытная задача.

— Не такая уж, наверное, любопытная, если Магистр решил её единым махом, — сказал президент пренебрежительно.

— Решил, да неправильно. Ведь девять в кубе — это 729, а сумма шести в кубе и восьми в кубе всего только 728.

— Не придирайся! — заартачился Нулик. — Подумаешь, ошибся человек на единицу! Можно, поди, подобрать и такие три числа, чтобы куб одного был в точности равен сумме кубов двух других.

— В том-то и дело, что нельзя.

— Это почему же?

Олег развёл руками.

— Прошу прощения, ваше президентство, но тут дело тонкое.

Президент обернулся в мою сторону:

— Правда?

Я кивнул.

— Да, брат, ты коснулся проблемы, над которой бились многие талантливые учёные, а все без толку… Точнее, почти без толку. Эта проблема известна под именем великой теоремы Ферма. В молодости я очень ею увлекался…

Глаза президента сверкнули.

— Расскажите! — потребовал он.

— Расскажите, расскажите! — поддержали остальные.

— Но для этого потребовалось бы целое заседание, — беспомощно отнекивался я.

— В таком случае, — объявил президент, — назначаю на послезавтра внеочередное заседание КРМ, посвящённое великой теореме Ферма!

Этим широковещательным анонсом и закончилось наше сборище.

<p><emphasis>ВНЕОЧЕРЕДНОЕ ЗАСЕДАНИЕ КРМ,</emphasis></p>

героем которого был я, естественно, происходило у меня дома. Когда все уселись, я начал свой рассказ без всякого предисловия.

— Представьте себе, что сейчас 1923 год. Москва, Замоскворечье. У крыльца одноэтажного домика стоит юноша и гадает: нажать кнопку звонка или вернуться подобру-поздорову домой? Этот юноша — я.

А в старом одноэтажном особнячке живёт кудесник — заслуженный профессор математики Александр Васильевич Васильев. Боже мой, какие замечательные книжки написал этот человек! Вот только что вышла его последняя работа: «Целое число». Эту книгу можно читать не отрываясь, забыв обо всём на свете, словно то не сухая математика, а по крайней мере…

— …«Три мушкетёра»! — подсказал Нулик.

Таня сделала ему страшные глаза, и он смущённо умолк.

— Подумать только, числа, которые ты всегда забывал и путал, потому что они все на одно лицо, — эти числа, оказывается, имеют самые различные характеры, привязанности, капризы. Потому и названия у них такие необыкновенные: совершенные, дружественные, мнимые… А вот числа, которые называются простыми, на самом деле не так просты. Хотя Эвклид доказал, что числам этим несть числа, а всё-таки до сих пор никто не может докопаться, по какому закону они распределяются среди других натуральных чисел. Да, числа — народ загадочный. Но Александр Васильевич Васильев с ними на короткой ноге. Из его-то книги и узнал я впервые о великой теореме Ферма. На первый взгляд теорема кажется совершенно простой. Но доказательство её так и не найдено. И это несмотря на то, что искали его многие замечательные математики последних трех столетий. Достаточно упомянуть хотя бы петербургского академика Леонарда Эйлера, соратника великого Ломоносова. Правда, поиски Эйлера всё-таки увенчались некоторым успехом — он доказал справедливость теоремы Ферма для частного случая.

— Что ж это за неуловимая теорема такая? — снова не удержался президент.

— Сейчас объясню. Вы ведь уже, кажется, знаете, что всегда можно подобрать целые числа так, чтобы сумма квадратов двух из них была равна квадрату третьего.

— Да, да, — встрепенулся Сева, — например, 32+42=52.

— Или 52+122=132, — добавила Таня.

— Совершенно верно, — подтвердил я. — Таких числовых троек бесконечно много. Между прочим, равенство a2+b2=c2 связывается обычно с теоремой Пифагора. Что же касается Севиного примера — 3, 4 и 5, то эта тройка чисел была известна ещё в Древнем Египте, более 4000 лет назад.

Но вот, оказывается, нельзя подобрать три целых числа, чтобы сумма кубов двух из них равнялась кубу третьего. Подобрать их нельзя также и для четвёртой, и для пятой, и вообще для любой другой степени. Иначе говоря, равенство an+bn=cn невозможно, если n больше двух. Это и есть великая теорема Ферма, возникшая в первой половине семнадцатого века. Французский юрист и математик Пьер Ферма изложил её на полях книги «Арифметика», написанной древнегреческим математиком Диофантом, который жил более чем за 1000 лет до Ферма.

— А сам-то Ферма доказал свою теорему? — спросил Нулик.

Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей