Читаем Учение логики о доказательстве и опровержении полностью

Косвенное апагогическое доказательство имеет две части. Сначала при помощи особого приёма доказывается ложность тезиса не-p, противоречащего доказываемому тезису р. А именно: предполагают, что тезис не-р, противоречащий доказываемому, — истинен. Этот противоречащий тезис (не-p) вводится в число оснований доказательства (а, b, с, d), о которых известно, что они истинны. Затем из получившихся таким образом оснований (а, b, с, d..., не-p) развивают ряд необходимо следующих из них выводов. Выводы эти развивают до тех пор, пока не получится какое-нибудь заключение, противоречащее одному из оснований, например основанию а. Так как два противоречащих друг другу положения не могут быть — по закону противоречия — оба сразу истинными, и так как известно, что положение а — истинно, то заключение не-a необходимо должно быть ложно. Итак, развивая выводы из принятых оснований, мы получили ложное заключение не-a. Но заключение не-a может быть ложно или оттого, что ложно какое-нибудь из оснований, на которые опирается не-а, или оттого, что логическая связь между основаниями (а, b, с, d..., не-p) и заключением (не-а) — неправильная. Так как в нашем случае логическая связь (по предположению) — правильная, и так как известно, что все основания, кроме не-р,— истинны, то ложным должно быть положение не-р.

Такова первая часть, или стадия, косвенного апагогического доказательства. Эта первая стадия выявляет ложность сделанного вначале предположения об истинности тезиса, противоречащего доказываемому. Поэтому первая часть косвенного доказательства называется reductio (deductio) ad absurdum, т. e. «приведение к нелепости».

Вторая стадия косвенного апагогического доказательства очень краткая. Предположенный истинным тезис не-p оказался ложным. Но тезис этот— противоречащий по отношению к доказываемому. На основании закона исключённого третьего из ложности суждения необходимо следует истинность противоречащего ему суждения. Поэтому из установленной ложности не-p необходимо следует истинность р, т. е. истинность того самого положения, которое должно было быть доказано.

Такова схема косвенного, апагогического доказательства.

Примером такого доказательства может быть доказательство известного правила первой фигуры простого категорического силлогизма. Согласно этому правилу, меньшая посылка первой фигуры должна быть утвердительной. Доказывается это следующим образом.

Предположим, что меньшая посылка первой фигуры может быть отрицательной, т. е. предположим, что истинен тезис, противоречащий доказываемому. Все остальные условия и правила первой фигуры, доказанные теорией силлогизма в качестве истинных, оставим в силе и, присоединив к ним предположение, будто меньшая посылка может быть отрицательной, посмотрим, какие выводы последуют из всех этих положений.

Если меньшая посылка (S—М) — отрицательная, то, согласно общим правилам силлогизма, заключение (S—Р) также будет отрицательное. Как известно из правил распределённости терминов, в отрицательном суждении предикат всегда распределён. Но предикат заключения является большим термином силлогизма. Согласно общим правилам силлогизма, если больший термин (Р) распределён в заключении, то он должен быть распределённым и в большей посылке. Но в этой посылке больший термин, будучи её предикатом, может быть распределённым только в том случае, если она отрицательна.

Однако (по предположению) меньшая посылка (S—М) тоже отрицательная. Так как, согласно общим правилам силлогизма, отрицательной может быть только одна посылка, то заключение об отрицательности большей посылки — ложно.

Обнаружившаяся ложность заключения может быть обусловлена либо логической ошибкой в выводе, либо ложностью оснований. Однако в данном случае вывод сделан правильно. С другой стороны, все основания, кроме предположения об отрицательности меньшей посылки, представляют собой заведомо истинные и строго доказанные логические правила теории суждения и силлогизма. Отсюда следует, что сделанное вначале предположение об отрицательности меньшей посылки — ложно. А так как ложное предположение об отрицательности меньшей посылки противоречит положению о её положительности, то, согласно закону исключённого третьего, из доказанной ложности предположения об отрицательности меньшей посылки необходимо следует её утвердительность.

Опровержения, так же как и простые доказательства истинности тезиса, могут быть как прямыми, так и косвенными.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия