Читаем Учение логики о доказательстве и опровержении полностью

И точно так же идеалист-неокантианец Эрнст Кассирер утверждает, будто тенденция современной науки «всё более и более ведёт к тому, что устраняются «данные» элементы, как таковые, и им не уделяется никакого влияния на общую форму хода доказательства»[26]. «Всякое понятие и всякое положение, которое употребляется в ходе доказательства и не служит просто для целей наглядности, должно быть обосновано строго и выведено целиком из законов конструктивной связи»[27].

Выражаясь проще, математическое понятие есть, согласно взгляду идеалистов, не порождение опыта, а порождение (или построение, «конструкция») ума, отливающееся в априорные формы мысли и возникающее по априорным законам мышления.

Учение идеализма о внеопытном и доопытном характере математических понятий совершенно ошибочно. Несостоятельность этого учения была доказана Энгельсом в «Анти-Дюринге». Исходя из того же самого факта — крайней обобщённости и отвлечённости математических понятий,— на котором идеализм всегда строил свою философию математики, Энгельс показал, что правильным объяснением этого факта может быть только материалистическое. «Понятие фигуры, как и понятие числа,— разъяснял Энгельс,— заимствовано исключительно из внешнего мира, а не возникло вовсе в голове из чистого мышления. Раньше чем люди могли прийти к понятию фигуры, должны были существовать вещи, которые имели форму и формы которых сравнивали. Чистая математика имеет своим предметом пространственные формы и количественные отношения действительного мира, т. е. весьма реальное содержание. Тот факт, что это содержание проявляется в крайне абстрактной форме, может лишь слабо затушевать его происхождение из внешнего мира. Чтобы изучить эти формы и отношения в их чистом виде, следует их оторвать совершенно от их содержания, устранить его как нечто безразличное для дела. Так получаются точки без протяжения, линии без толщины и ширины, а и Ь, х и у, постоянные и переменные. ..Точно так же выведение математических величин как будто бы друг из друга доказывает не их априорное происхождение, но только их рациональную связь. Прежде чем пришли к мысли выводить форму цилиндра из вращения прямоугольника вокруг одной из его сторон, нужно было исследовать не мало реальных прямоугольников и цилиндров, хотя бы и в весьма несовершенной форме... как и во всех областях мышления, отвлеченные от действительного мира законы на известной ступени развития отрываются от действительного мира, противопоставляются ему как нечто самостоятельное, как явившиеся извне законы, по которым должен направляться мир... так, а не иначе, применяется впоследствии чистая математика к миру, хотя она и заимствована из этого мира и представляет только часть его составных форм несобственно, только поэтому она вообще применима к нему»[28].

Так обстоит дело с понятиями, определениями и аксиомами математики. Сложнее обстоит дело с доказательствами. Во всех науках, кроме математических, доказательство всегда непосредственно связано с опытом. Это значит, что кроме той связи с опытом, без которой вообще не могло бы существовать никакое понятие, никакая аксиома, в науках этих в состав доказательства всегда входят такие части и такие данные, которые прямо предполагают обращение к опыту: к наблюдению, эксперименту и т. д.

Напротив, в математических науках доказательства (если рассматривать одну логическую их сторону, а не происхождение понятий, входящих в состав доказательств) всегда ведутся таким образом, что в ходе доказательства математику не приходится прямо обращаться к опыту, помимо тех обобщений опыта, которые уже содержатся в его понятиях, определениях и аксиомах. Иными словами, опыт входит в математические доказательства не непосредственно, как он входит в доказательства физика, химика, биолога, но лишь посредством понятий, которые образуются на основе опыта, но в своём содержании являются отвлечёнными по отношению к этому опыту.

Это различие между науками математическими и науками эмпирическими, т. е. доказывающими свои положения при участии прямого обращения к опыту, порождает различие в видах доказательства.

Доказательства математических наук, не требующие привлечения прямых данных опыта в самом ходе доказательства и опирающиеся на опыт лишь через посредство тех обобщений опыта, которые содержатся в основных понятиях, определениях и аксиомах этих наук, называются математическими доказательствами.

Доказательства наук, необходимо требующие привлечения прямых данных опыта в самом ходе доказательства и, таким образом, не ограничивающиеся теми обобщениями опыта, которые содержатся в их основных понятиях, называются эмпирическими доказательствами.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия