Инвертирующий шум — одно из четырех предоставляемых этой программой искажений изображения. Остальные искажения описаны в разделах: Затенение изображения, Добавляющий шум, Гасящий шум.
При исполнении команды "Гасящий шум", при редактировании задачи или, во всех программах, кроме программы Hopfield, во время Статистического теста с гасящим шумом производится наложение на изображение гасящего шума. Алгоритм «зашумления» с заданным уровнем Гасящего шума:
Для каждой точки изображения генерируется случайное число из диапазона (0,1).
Если это число меньше либо равно заданному уровню шума, то в изображении гасится соответствующая точка.
Гасящий шум — одно из четырех предоставляемых этой программой искажений изображения. Остальные искажения описаны в разделах: Затенение изображения, Добавляющий шум, Инвертирующий шум.
Эта функция удаляет активный пример активной задачи. Если после этого примеров не остается, то заводится пустой пример. Таким образом, все задачи всегда содержат хотя бы один пример.
Эта функция делает активным первый пример активной задачи.
Эта функция делает активным последний пример активной задачи.
Эта функция удаляет все примеры активной задачи и заводит один пустой пример.
Нейронная сеть
Нейронная сеть в данной программе является полносвязной (каждый нейрон связан с каждым, в том числе и с самим собой), однородной (все нейроны одинаковы), стонейронной (поскольку в сетях Хопфилда каждой точке изображения соответствует свой нейрон, а в этой программе используются изображения 10*10) сетью Хопфилда. Алгоритм формирования Синаптической карты описан в разделах "Параметры" и "Обучение". Алгоритм функционирования каждого нейрона описан в разделе "Нейрон".
Сеть, имитируемая данной программой, является полносвязной (каждый нейрон получает на каждом шаге сигналы со всех нейронов), с выделенными связями для получения входных данных. Подробная схема нейрона приведена в разделе Нейрон. Число нейронов в сети может варьироваться от 5 до 10 (см Число нейронов в сети). Число обменов сигналами между нейронами может варьироваться от 2 до 5 (см. Число срабатываний сети).
В данной программе все нейроны сети одинаковы и очень просты. Обозначив вектор сигналов сети через a[i] (i=1,…,100), а элементы синаптической карты — синаптические веса — через X[ij], работу нейрона можно описать следующими формулами:
J[i]= Сумма по j от 1 до 100 (a[j]*X[ij])
a'[i]= 1, если J[i]>0; 0, если J[i]<0.
a'[i] — новый сигнал i-ого нейрона.
Схема рационального нейрона представлена на рисунке ниже. Он состоит из шести частей: входных синапсов (x[i,j], y[i,j]), сумматоров (N,D) и функционального преобразователя (F).
Схема действия i-го нейрона проста — в каждый момент времени со всех нейронов на него поступают сигналы. Перед сумматором каждый сигнал умножается на синаптический вес x[i,j] для сумматора N и y[i,j] для сумматора D. Индекс i показывает номер нейрона получающего, а индекс j — номер передавшего сигнал. Отметим, что в силу ограничений, принятых в данной модели нейронной сети, все синаптические веса неотрицательны. После этого сигналы поступают на сумматоры. Вычисленные сумматорами сигналы передаются на функциональный преобразователь F. В данной программе все нейроны одинаковы (во всем, кроме синаптических весов, поскольку они являются характеристиками не нейронов, а нейронной сети в целом) и преобразуют сигнал по следующему правилу: F = N / (C + D), где С — Характеристика нейрона