Доказательство. Из равенства единице последней координаты всех векторов множества X следует отсутствие пар противоположно направленных векторов. Пусть x — вектор с координатами ±1, не входящий в множество X, следовательно последняя координата вектора x равна минус единице. Так как в множество X включались все (n-1) — мерные вектора с координатами ±1, то среди них найдется вектор, первые n-1 координата которого равны соответствующим координатам вектора x со знаком минус. Поскольку последние координаты также имеют противоположные знаки, то в множестве X нашелся вектор противоположно направленный по отношению к вектору x. Таким образом множество X максимально.
Таким образом в множестве X содержится ровно 2n-1 вектор. Каждый вектор x∈X можно представить в виде , где I⊂{1, …, n-1}. Для нумерации векторов множества X будем использовать мультииндекс I. Обозначим через |I| число элементов в мультииндексе I. Используя введенные обозначения можно разбить множество X на n непересекающихся подмножеств: Pi = {xI, |I|=i}, .
Теорема. При k в множестве {x⊗k} линейно независимыми являются
векторов.
Для доказательства этой теоремы потребуется следующая интуитивно очевидная, но не встреченная в литературе лемма.
Лемма. Пусть дана последовательность векторов
a1,a2=a¹2+a²2,a3=a¹3+a²3,…,am=a¹m+a²m
таких, что (ai,a²j)=0 при всех i<j и (a¹i,a²i)=0, a²i≠0 при всех i, тогда все вектора множества {ai} линейно независимы.
Доказательство. Известно, что процедура ортогонализации Грама приводит к построению ортонормированного множества векторов, а все вектора линейно зависящие от предыдущих векторов последовательности обращаются в нулевые. Проведем процедуру ортогонализации для заданной последовательности векторов.
1. b1=a1/||a1||
2. b2=(a2-(a2,b2))/||a2-(a2,b1)b1||. Причем a2-(a2,b1)b1 ≠ 0, так как (a1, a²2)=0, (a¹2-((a2,b1)b1,a²2)=0 и a²2≠0.
…
j.
Причем , так как (ai, a²j)=0, при всех i,
и a²j≠0.
…
Доказательство теоремы. Произведем линейное преобразование векторов множества x с матрицей
Легко заметить, что при этом преобразовании все единичные координаты переходят в единичные, а координаты со значением –1 в нулевые. Таким образом .
По пятому свойству заключаем, что число линейно независимых векторов в множествах X и Y совпадает. Пусть 1≤m≤k. Докажем, что yI⊗k при |I|=m содержит компоненту, ортогональную всем yJ⊗k, |J|≤m, J≠I.
Из предложения 1 имеем
(17)
Представим (17) в виде двух слагаемых:
(18)
Обозначим первую сумму в (18) через yI0⊗k. Докажем, что yI0⊗k ортогонален ко всем yJ⊗k, |J|≤m, J≠I, и второй сумме в (18). Так как I≠J, I⊄J, существует q∈I, q∉J.
Из свойств сюръективного мультииндекса следует, что все слагаемые, входящие в yI0⊗k содержат в качестве тензорного сомножителя eq, не входящий ни в одно тензорное произведение, составляющие в сумме yJ⊗k. Из свойства 2 получаем, что (yJ⊗k, yI0⊗k) = 0. Аналогично, из того, что в каждом слагаемом второй суммы L≠I, I⊄L следует ортогональность yI0⊗k каждому слагаемому второй суммы в (18) и, следовательно, всей сумме.
Таким образом yI⊗k содержит компоненту yI0⊗k ортогональную ко всем yJ⊗k, |J|≤m, J≠I и (yJ⊗k-yI0⊗k). Множество тензоров Yk={yI⊗k, |I|≤k} удовлетворяет условиям леммы, и следовательно все тензоры в Yk линейно независимы. Таким образом, число линейно независимых тензоров в множестве не меньше чем
Для того, чтобы показать, что число линейно независимых тензоров в множестве {x⊗k} не превосходит этой величины достаточно показать, что добавление любого тензора из Y к Yk приводит к появлению линейной зависимости. Покажем, что любой yI⊗k при |I|>k может быть представлен в виде линейной комбинации тензоров из Yk. Ранее было показано, что любой тензор yI⊗k может быть представлен в виде (17). Разобьем (17) на три суммы:
(19)
Рассмотрим первое слагаемое в (19) отдельно.
Заменим в последнем равенстве внутреннюю сумму в первом слагаемом на тензоры из Yk:
(20)
Преобразуем второе слагаемое в (19).
(21)
Преобразуя аналогично (21) второе слагаемое в (20) и подставив результаты преобразований в (19) получим
(22)
В (22) все не замененные на тензоры из Yk слагаемые содержат суммы по подмножествам множеств мощностью меньше k. Проводя аналогичную замену получим выражение, содержащее суммы по подмножествам множеств мощностью меньше k-1 и так далее. После завершения процедуры в выражении останутся только суммы содержащие вектора из Yk, то есть yI⊗k будет представлен в виде линейной комбинации векторов из Yk. Теорема доказана.
Лекция 7.1. Двойственные сети
Начиная с этой лекции и до конца курса будем рассматривать сети, решающие задачу аппроксимации функции.