Математическая аналогия класса типов это алгебраическая система. Алгебра изучает свойства объекта в
терминах операций, определённых на нём, и взаимных ограничениях этих операций. Алгебраическая систе-
ма представляет собой набор операций и свойств этих операций. Этот подход позволяет абстрагироваться
от конкретного представления объектов. Например группа – это все объекты данного типа a, для которых
определены значения: константа – единица типа a, бинарная операция типа a -> a -> a и операция взятия
обратного элемента, типа a -> a. При этом на операции накладываются ограничения, называемые свойства-
ми операций. Например, ассоциативность бинарной операции, или тот факт, что единица с любым другим
элементом, применённые к бинарной операции, дают на выходе исходный элемент.
Давайте определим класс для группы:
class Group a where
e
:: a
(+) :: a -> a -> a
inv :: a -> a
Класс с именем Group имеет для некоторого типа a три метода: константу e :: a, операцию (+) :: a ->
a -> a и операцию взятия обратного элемента inv :: a -> a.
Как и в алгебре, в Haskell классы типов позволяют описывать сущности в терминах определённых на них
операций или значений. В примерах мы указываем лишь наличие операций и их типы, так же и в классах
типов. Класс типов содержит набор имён его значений с информацией о типах значений.
Определив класс Group, мы можем начать строить различные выражения, которые будут потом интер-
претироваться специфическим для типа образом:
twice :: Group a => a -> a
twice a = a + a
isE :: (Group a, Eq a) => a -> Bool
isE x = (x == e)
Обратите внимание на запись Group a => и (Group a, Eq a) => . Это называется контекстом объявления
типа. В контексте мы говорим, что данный тип должен быть из класса Group или из классов Group и Eq. Это
значит, что для этого типа мы можем пользоваться методами из этих классов.
В первой функции twice мы воспользовались методом (+) из класса Group, поэтому функция имеет кон-
текст Group a => . А во второй функции isE мы воспользовались методом e из класса Group и методом (==)
из класса Eq, поэтому функция имеет контекст (Group a, Eq a) => .
Контекст классов типов. Суперклассы
Класс типов также может содержать контекст. Он указывается между словом class и именем класса.
Например
class IsPerson a
class IsPerson a => HasName a where
name :: a -> String
Это определение говорит о том, что мы можем сделать экземпляр класса HasName только для тех типов,
которые содержатся в IsPerson. Мы говорим, что класс HasName содержится в IsPerson. В этом случае класс
из контекста IsPerson называют
Это сказывается на контексте объявления типа. Теперь, если мы пишем
Классы типов | 19
fun :: HasName a => a -> a
Это означает, что мы можем пользоваться для значений типа a как методами из класса HasName, так и
методами из класса IsPerson. Поскольку если тип принадлежит классу HasName, то он также принадлежит и
IsPerson.
Запись (IsPerson a => HasName a) немного обманывает, было бы точнее писать IsPerson a <= HasName
a, если тип a в классе HasName, то он точно в классе IsPerson, но в Haskell закрепилась другая запись.
1.5 Экземпляры классов типов
В
деление экземпляра пишется так же, как и определение класса типа, но вместо class мы пишем instance,
вместо некоторого типа наш конкретный тип, а вместо типов методов – уравнения для них.
Определим экземпляры для Bool
Класс Eq:
instance Eq Bool where
(==) True
True
= True
(==) False False = True
(==) _
_
= False
(/=) a b
= not (a == b)
Класс Show:
instance Show Bool where
show True
= ”True”
show False = ”False”
Класс Group:
instance Group Bool where
e
= True
(+) a b = and a b
inv a
= not a
Отметим важность наличия свойств (ограничений) у значений, определённых в классе типов. Так, на-
пример, в классе типов “сравнение на равенство” для любых двух значений данного типа одна из операций
должна вернуть “истину”, а другая “ложь”, то еесть два элемента данного типа либо равны, либо не рав-
ны. Недостаточно определить равенство для конкретного типа, необходимо убедиться в том, что для всех
элементов данного типа свойства понятия равенства не нарушаются.
На самом деле приведённое выше определение экземпляра для Group не верно, хотя по типам оно под-
ходит. Оно не верно как раз из-за нарушения свойств. Для группы необходимо, чтобы для любого a выпол-
нялось:
inv a + a == e
У нас лишь два значения, и это свойство не выполняется ни для одного из них. Проверим:
inv True
+ True
=> (not True) + True
=> False
+ True
=> and False