В выражении "содержит арифметики, достаточной..." речь идет об уже упомянутом условии того, что множество аксиом, о котором мы говорим, способно доказать все финитные истинные высказывания. Но как же может множество доказать или не доказать собственную непротиворечивость? Для начала арифметические аксиомы позволяют доказать только те высказывания, в которых говорится о числах, но не такие, в которых говорится о непротиворечивости множества аксиом. Мы уже сталкивались с подобной проблемой в предыдущей главе, когда хотели записать арифметическое высказывание, которое говорило бы о себе самом. Как добиться того, чтобы арифметическое высказывание, в котором говорится о числах, начало говорить о самом себе? Способом достижения этого была идентификация высказываний с помощью их кодов, так чтобы разговор о высказывании был равносилен разговору о его коде.
Давид Гильберт на инаугурационном докладе на Втором Международном математическом конгрессе в Париже в 1900 году
В нашем случае, когда мы хотим записать арифметическое высказывание, в котором говорилось бы о непротиворечивости множества аксиом, нумерация Гёделя снова приходит нам на помощь.
Как уже говорилось, если множество аксиом противоречиво, то любое высказывание доказуемо на его основе. Наоборот, если множество непротиворечиво, всегда найдется высказывание, являющееся недоказуемым (поскольку для любого Р либо оно, либо его отрицание, по крайней мере одно из двух, недоказуемо). Следовательно, непротиворечивость множества аксиом равносильна тому, что есть по крайней мере одно высказывание, которое не является доказуемым на его основе. То, что система непротиворечива, равносильно следующему:
Вновь возьмем гипотетический пример из предыдущей главы, в котором мы предположили, что всем высказываниям соответствуют коды, являющиеся простыми числами, а доказуемым высказываниям, в частности, соответствуют простые числа, являющиеся суммой или разностью трех последовательных простых чисел. В данном контексте в предыдущем высказывании утверждалось бы, что "существует некоторое простое число, не являющееся суммой или разностью трех последовательных простых чисел", что на другом уровне прочтения означало бы: "существует код высказывания, не являющийся кодом доказуемого высказывания", то есть "существует недоказуемое высказывание" или "множество аксиом непротиворечиво".
У нас есть два уровня прочтения для "существует некоторое простое число, не являющееся суммой или разностью трех последовательных простых чисел": арифметический, где указывается только арифметическое свойство; и более высокий уровень прочтения, зависящий от нумерации Гёделя, на котором заявляется непротиворечивость множества аксиом. Теперь сформулируем вторую теорему о неполноте:
Прокомментируем идею доказательства этой теоремы, как это сделал Гёдель в статье 1931 года. В своей первой теореме о неполноте Гёдель доказывает, что:
Заметим, что высказывание, в котором говорится: "G недоказуемо", — это само G. То есть G = "G недоказуемо". Следовательно, в предыдущее утверждение, в котором говорится: "G недоказуемо", можно просто поставить G. Или, что то же самое, в своей первой теореме Гёдель доказал:
Итак, если доказать, что система аксиом непротиворечива, то высказывание "если множество аксиом непротиворечиво, то справедливо G" будет доказуемым. То есть "если множество аксиом непротиворечиво, то справедливо G" доказуемо, тогда доказуемо "множество аксиом непротиворечиво".
Тогда, по правилу вывода, G тоже доказуемо. Это абсурд, поскольку мы уже доказали, что G недоказуемо. Делаем вывод, что "множество аксиом непротиворечиво" недоказуемо на основе аксиом (см. схему).
В последней главе мы рассмотрим некоторые философские следствия обеих теорем Гёделя о неполноте.
ГЛАВА 4
Гёдель и Эйнштейн