Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

Сами по себе пропозициональные функции не являются высказываниями, поскольку высказывание по определению должно быть истинным или ложным, в то время как истинность или ложность фразы "х — четное число" зависит от значения х. Каждый раз, когда мы заменяем х конкретным числом, мы получаем высказывание, которое будет истинным или ложным в зависимости от выбранного числа. Например, если в "х — четное число" заменить х числом 8, то мы получим истинное высказывание "8 — четное число". Наоборот, если заменить х числом 3, мы получим ложное высказывание "3 — четное число".

Мы уже сказали, что каждой пропозициональной функции также назначается число Гёделя (как и для высказываний, эти коды вычисляются с помощью установленного алгоритма). Например, мы можем представить, что:

"х делится на 18" ↔ код 162

"х — четное число" ↔ код 171.

Заметим, что "х — четное число" назначается код 171, в то время как высказыванию "2 — четное число" соответствует код 223. Коды разные, и это правильно, поскольку речь идет о разных лингвистических объектах. Точно так же "1 — четное число", "3 — четное число", "4 — четное число" имеют разные числа Гёделя.

Наконец, число Гёделя также назначается каждой конечной последовательности высказываний (которое вычисляется на основе кодов высказываний, образующих последовательность). Идея этого назначения в том, чтобы гарантировать, что каждое доказательство также можно будет идентифицировать по его коду. Например, следующему доказательству того, что "4 = 2 + 2" на основе аксиом "S(x + у) = х + S(y)" и "х + 1 = = S(x)":

S(x + y)=x + S(y) 173

S(2 + 1)-2+ S(1) 199

S(2 + 1) = 2+ 2 13

х + 1 = 5(х) 37

2 + 1 = 5(2) 83

2 + 1=3 7

S(3) = 2+ 2 251

4 = 2 + 2 67

может соответствовать (гипотетически) код 2414871965597, который мы вычислили как произведение кодов высказываний, его образующих (они указаны рядом с соответствующим высказыванием).

НУМЕРАЦИЯ ГЁДЕЛЯ

Как в действительности определяется нумерация Гёделя? Чтобы определить ее, каждое высказывание и каждая пропозициональная функция должны быть выражены с помощью символов формального языка. Ученый назначил каждому символу этого языка нечетное число.

 1

=> 3

┐ 5

= 7

1 9

S 11

+ 13

· 15

( 17

) 19

x1 21

х2 23

х3 25

Количество переменных потенциально бесконечно. Оставшимся (х4, х5, ...) соответствуют числа 27, 29 и так далее. Гёдель назначил коды высказываний и пропозициональных функций. Для большей ясности объясним метод на конкретном примере. Какой код соответствует, например, высказыванию "1 = 1"? Шаги для его вычисления следующие.

1. Сначала остановимся на кодах символов, образующих высказывание: 9, 7,9.

2. Поскольку есть три символа, теперь возьмем по порядку три первых простых числа: 2, 3, 5.

3. Тогда код следующий: 29 · З7 · 59 = 2187 000 000 000. (Заметьте, что простые числа — это основания степеней, а коды символов — показатели степеней.)

Для вычисления числа Гёделя конечной последовательности высказываний поступают похожим образом, только на шаге 1 берутся по порядку коды высказываний, образующих последовательность, а на последнем шаге они становятся показателями степеней простых чисел.

Конечно же, как и в предыдущих случаях, должен существовать механический способ, указывающий, как вычислить код последовательности высказываний, и другой, обратный способ, который при заданном коде позволил бы восстановить последовательность соответствующих ему высказываний. Наше правило вычисления кода последовательности как произведения индивидуальных кодов неверно, потому что игнорируется порядок высказываний (при перестановке высказываний местами код конечной последовательности остается тем же самым, но этого не должно происходить, так как при перестановке на самом деле получается другая последовательность). Однако, поскольку речь идет только о гипотетическом примере, мы не будем останавливаться на этом вопросе.

ПОНЯТИЕ ДОКАЗУЕМОСТИ МОЖНО ВЫРАЗИТЬ
Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука