Читаем У интуиции есть своя логика. Гёдель. Теоремы о неполноте. полностью

Ученый опубликовал все свои работы по математической логике в течение всего десяти лет, с 1930 по 1939 год (пока жил в Вене, хотя последние две статьи, 1938 и 1939 годов, были опубликованы на английском языке в американских журналах). Во время принстонского периода Гёдель не публиковал результатов по логике и в основном (за исключением уже упомянутых статей по теории относительности) занимался комментированием философских выводов своих предыдущих исследований.

ДЖЕЙМС ДЖИНС

Джеймс Хопвуд Джинс, которого Гёдель цитирует в своей второй статье о теории относительности,— британский физик, математик и астроном, родившийся в 1877 году в графстве Ланкашир. Он учился в Кембриджском университете и преподавал там же до переезда в Принстонский университет в 1904 году, где работал преподавателем прикладной математики. Вернулся в Кембридж в 1910 году. Джинс внес важный вклад в квантовую механику, теорию излучения и звездную эволюцию. Его анализ вращающихся тел привел к выводу о том, что теория Лапласа об образовании Солнечной системы из облака газа была ошибочной. В свою очередь, Джинс предположил, что планеты возникли из вещества, испущенного Солнцем из-за гипотетического столкновения с другой звездой; однако сегодня эта теория не принята. Ученый написал несколько книг по популярной физике и космологии, которые принесли ему славу замечательного популяризатора науки. В одной из них, "Загадочная Вселенная", сказано:

"Направление знаний устремляется к немеханической реальности: Вселенная теперь больше похожа на великую мысль, чем на великую машину. Разум уже не кажется неким существом, случайно вторгшимся в королевство материи... мы скорее должны приветствовать его как создателя и властелина королевства материи". 

Джеймс Джинс скончался в графстве Суррей (Англия) в 1946 году.

Последняя научная работа по математической логике за авторством Гёделя появилась в форме книги объемом примерно 70 страниц, опубликованной издательством Принстонского университета в 1940 году. Она не была напрямую написана Гёделем, а представляла собой издание конспектов курса, прочитанного ученым в 1938-1939 годах в Институте перспективных исследований. Книга называется "Совместимость аксиомы выбора и обобщенной континуум-гипотезы с аксиомами теории множеств", и в ней изложено частичное решение первой из проблем, которые поставил Давид Гильберт на своей знаменитой лекции 1900 года, — проблемы, изначально сформулированной Георгом Кантором и известной как континуум-гипотеза.

КАРДИНАЛЬНЫЕ ЧИСЛА

Чтобы понять, что такое континуум-гипотеза, мы должны вернуться к теории Кантора о бесконечности, о которой говорилось в первой главе. Вспомним, что множество, по словам самого Кантора, это "собрания целиком объектов действительности или нашей мысли". Так, имеется множество всех дней недели, множество всех месяцев в году или множество четных натуральных чисел. Одни из этих множеств конечны, другие бесконечны.

Множество является конечным, когда возможно сосчитать его члены один за другим, и этот счет в какой-то момент заканчивается. В бесконечных множествах, наоборот, счет никогда не заканчивается. Если у нас есть конечное множество, мы вполне можем сказать, сколько в нем членов; например, во множестве дней недели семь членов, а во множестве месяцев года — 12. Количество членов множества математики называют его кардинальным числом; таким образом, мы можем сказать, что кардинальное число множества, образованного буквами слова "море", равно четырем.

Перейти на страницу:

Похожие книги