Читаем Твой первый квадрокоптер: теория и практика полностью

Источником колебаний грузиков являются гребенчатые электростатические двигатели. Грузики, вместе с электродами, расположенными на подложке, образуют конденсаторы, входящие в состав дифференциальной схемы, вырабатывающей сигнал, пропорциональный разности емкостей конденсаторов. Линейное ускорение одинаково воздействует на оба грузика и подложку, поэтому сигнал на выходе дифференциальной схемы не появляется. Когда возникает вращательное ускорение по оси со, то на грузики начинает действовать сила Кориолиса FC, отклоняя грузики в противоположных направлениях. Соответственно, емкость одного конденсатора увеличивается, а другого уменьшается, что порождает разностный сигнал, пропорциональный величине углового ускорения. Изначально, при включении, разностный сигнал на выходе гироскопа не нулевой, поэтому требуется процедура стартовой калибровки, когда микроконтроллер опрашивает показания гироскопов в состоянии покоя и принимает их за нулевые. Во время прохождения калибровки нельзя двигать коптер.

Но почему в конструкции квадрокоптера нельзя обойтись простейшей системой стабилизации на основе гироскопов, по одному на каждую ось вращения? Зачем нужны другие датчики и микроконтроллер со сложной программой? В реальных условиях квадрокоптер не отклоняется идеально лишь по одной оси. В общем случае отклонение комбинированное, с неким соотношением между осями. По этой причине необходимо устройство, которое будет обрабатывать сигналы от всех гироскопов и формировать управляющие сигналы для регуляторов оборотов моторов.

Например, под влиянием случайного порыва ветра квадрокоптер отклонился по диагонали назад вправо. Значит, управляющая система должна увеличить обороты правого заднего мотора и уменьшить левого переднего, отклоняя раму вперед влево. Но моторы, регуляторы и пропеллеры не идеально одинаковые, и команду они отработают по-разному. Возникнет некомпенсированный реактивный крутящий момент. Следовательно, одновременно с выравниванием квадрокоптера в горизонт полетный контроллер должен оперативно внести коррективы в обороты другой пары моторов, чтобы скомпенсировать вращение по курсу. И это самый простой пример, в котором мы не учитываем, что в то же самое время с пульта могут поступать сигналы управления. Впрочем, с вычислительной задачей для системы с тремя гироскопами способен справиться недорогой микроконтроллер начального уровня. Сейчас по такому принципу устроены простые игрушечные квадрокоптеры-"НЛО". Такие игрушки неплохо летают в помещении, но для управления ими необходимо постоянно визуально контролировать, в каком положении находится квадрокоптер.

Напомним, что интегральный гироскоп — это всего лишь датчик углового ускорения. Для него нет понятия "верх" или "низ", и ему безразлично, в каком статическом положении относительно горизонта он находится. Он лишь показывает мгновенное угловое ускорение относительно начального положения. Как только внешнее воздействие начнет поворачивать раму квадрокоптера вокруг одной из осей, то от соответствующего гироскопа немедленно поступит сигнал на процессор полетного контроллера. В ответ контроллер скорректирует обороты моторов так, чтобы скомпенсировать ускорение. Но как только внешнее воздействие прекратится, угловое ускорение станет равным нулю, и на основании сигналов одних лишь гироскопов контроллер не узнает, вернулся ли квадрокоптер в исходное положение. Это задача оператора, которую он может решать только при визуальном контроле.

А теперь представьте, что вы командой с пульта отклонили квадрокоптер на пять градусов вправо, а затем вернули рукоятку пульта в нейтральное положение. В соответствии с сигналом пульта контроллер сделает обороты всех моторов одинаковыми, но это вовсе не означает, что квадрокоптер вернется в горизонтальное положение. Гироскопам имеющийся статический наклон будет безразличен. Нет углового ускорения — на выходе гироскопа нулевое значение. Кроме того, гироскоп имеет ограниченную чувствительность: медленное вращение он просто не заметит.

При гироскопической стабилизации оператор должен выровнять коптер вручную. На практике, квадрокоптер, оснащенный только гироскопами, не может стабильно висеть более минуты даже в помещении. Далее нужно вручную парировать его дрейф. Свое влияние на показания гироскопов оказывают изменение температуры корпуса и угловые ускорения, возникающие при вращении Земли. Следовательно, для более продвинутой конструкции полетного контроллера необходим датчик, показывающий положение квадрокоптера относительно земной поверхности (если точнее, то относительно вектора ускорения свободного падения, который всегда направлен перпендикулярно земной поверхности, к центру Земли). Такой датчик есть в каждом современном смартфоне или планшете и называется акселерометром.

Принцип работы интегрального акселерометра

Перейти на страницу:

Все книги серии Электроника

Твой первый квадрокоптер: теория и практика
Твой первый квадрокоптер: теория и практика

Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей. Подробно изложен принцип работы и процесс настройки систем, OSD, телеметрии, беспроводного канала Bluetooth и популярных навигационных модулей GPS Ublox. Рассказано об устройстве и принципах работы интегральных сенсоров и полетного контроллера.Даны рекомендации по подбору оборудования FPV начального уровня, приведен обзор программ дня компьютеров и смартфонов, применяемых при настройке оборудования квадрокоптера.Для читателей, интересующихся электроникой, робототехникой, авиамоделизмом

Валерий Станиславович Яценков

Развлечения
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки

Похожие книги