Каждому понятно, какие богатые возможности сулит человечеству сила инерции [6], когда ему удастся, наконец, вырваться за те пределы, которыми ограничивается действие силы тяготения нашей планеты, и, преодолев огромнейшие космические пространства, посетить другие миры.
Принцип инерции вошел в науку под именем первого закона Ньютона. Этот закон гласит: «всякое изолированное тело находится в состоянии покоя или движется прямолинейно и равномерно».
Прямолинейным и равномерным называют такое движение тела, когда последнее перемещается по прямой и в равные промежутки времени проходит одинаковые расстояния.
Действие силы инерции нам довольно часто приходится испытывать на своем собственном теле.
Первый пример. Отправляясь в какое-нибудь дальнее путешествие, вы садитесь в вагон поезда и терпеливо ожидаете момента его отхода. Наконец, поезд трогается. Все идет как нельзя лучше. Вы вначале ничего особенного не ощущаете. В окне мелькают небольшие пригородные станции. Поезд мчится на всех парах по гладкому железнодорожному пути. Вот невдалеке виднеется большая, должно быть узловая, станция. Машинист начинает резко тормозить поезд. Вы это легко обнаруживаете, потому что, сидя лицом по направлению движения поезда, чувствуете внезапный довольно сильный толчок вперед, словно кто-то сзади толкнул вас; корпус вашего тела подался вперед. Этот неожиданный толчок и был сообщен силой инерции, направление которой до этого момента совпадало с направлением движения поезда, в то время как сила торможения была направлена в обратную сторону.
Машинист, закрыв доступ пара в цилиндры паровоза, начал тормозить поезд. Спрашивается: почему же паровоз вместе с вагонами не остановился в тот момент, когда действие движущей силы (пара) сменилось процессом торможения? Дело в том, что, как только была нарушена циркуляция пара в цилиндрах паровоза, движение поезда совершалось уже по инерции.
Для уничтожения силы инерции машинисту пришлось прибегнуть к помощи тормоза. Сила торможения и оказала противодействие нежелательной в данном случае силе инерции.
Второй пример. Многим из вас приходилось в морозный зимний вечер кататься на коньках по зеркальной ледяной поверхности многолюдного катка. Сделав несколько энергичных разбегов, вы довольно продолжительное время движетесь вперед без малейших к тому усилий с вашей стороны, скользя в выбранном направлении. Это перемещение по льду, как и в первом случае, совершалось по инерции. Вы продолжали двигаться в течение некоторого времени, несмотря на то, что действие мускульной силы ваших ног, при помощи которой вы сообщили себе начальную скорость, прекратилось.
Если бы поезд не встречал сопротивления со стороны массы воздуха и отсутствовала бы сила трения колес паровоза и вагонов о рельсы, поезд продолжал бы двигаться по инерции вечно, будучи однажды приведен в движение внешней силой, то-есть паром.
В равной степени и ваше скольжение на коньках по льду никогда бы не прекратилось, если бы отсутствовали внешние силы — сопротивление воздуха и трение коньков о лед.
Чтобы сдвинуть с места какой-нибудь предмет, надо приложить к нему достаточной величины внешнюю силу, без действия которой он не может быть выведен из состояния покоя.
Движущиеся по инерции поезд, конькобежец и т. д. также выводятся из состояния покоя внешними силами. Только внешние силы могут вывести тело из состояния покоя или инерции.
Допустим, что каким-то образом нам удалось осуществить равномерное и прямолинейное движение, которое нам теперь не трудно представить.
Сообщим тому или иному телу, например движущемуся биллиардному шару, толчок, направленный в ту же сторону, в которую он движется.
Получив толчок, шар будет двигаться быстрее, и это ускорение после каждого нового удара будет непрерывно расти.
Такое движение мы можем назвать равномерно-ускоренным, вследствие того, что при нем скорость шара все время увеличивается на некоторую величину, называемую в механике ускорением. Направление движения всецело будет зависеть от направления полученного шаром удара.
Совершенно очевидно следующее положение: чем с большею силой мы ударим шар, тем большее увеличение получит его скорость, то-есть тем большее он будет иметь ускорение. Второй закон Ньютона как раз все это и предусматривает. Он гласит: «изменение движения какого-нибудь тела прямо пропорционально действующей силе и происходит в направлении ее действия».
Чем больше масса [7] тела, тем и большая сила потребуется, чтобы сообщить этому телу известное ускорение, и, наоборот, с уменьшением массы тела придется затратить соответственно меньшую силу для получения того же самого ускорения. Поясним это на конкретном примере. Вы поднимаете камень весом, скажем, в два килограмма и бросаете его с какой-то скоростью, затратив определенную силу. Чтобы бросить с той же скоростью камень весом в четыре килограмма, вам, естественно, надо будет затратить вдвое большую силу.