Для начала заглянем в энциклопедический словарь и найдем там такое пояснение: «Абстракция — мысленное отвлечение от тех или иных конкретных сторон, свойств или связей предмета. Научная абстракция — отвлечение от несущественных, случайных признаков предмета или явления в целях познания наиболее существенных его сторон…»
Сейчас мы начинаем серьезное знакомство с транзисторными усилителями. Начинаем не с каких-либо конкретных, а именно с абстрактных, обобщенных, «очищенных» от подробностей транзисторных схем. На этих схемах в коллекторную цепь транзистора вместо определенного резистора на 1,5 или на 4,3 килоома будет включен абстрактный, без конкретного значения резистор
Вам, по-видимому, хочется узнать, для чего понадобилось такое отвлечение от «конкретных сторон, свойств или связей» нашего «предмета» — транзисторного усилителя? И почему нельзя знакомиться с транзисторными усилителями не по абстрактным, а по конкретным схемам, которые в заключение знакомства можно было бы «спаять» и «пустить в дело»? Пусть таких практических схем очень много, пусть знакомство с ними дело долгое и утомительное, но ведь лучше сразу затрачивать силы и время на нужное, практически важное дело, чем заниматься какими-то абстракциями!
В качестве ответа на эти вопросы и возражения приведем такое сравнение.
Существуют очень сложные арифметические задачи, которые можно решать «обычным способом» — последовательно придумывать простые вопросы и отвечать на них вычислениями.
А можно решать эти задачи и по-другому — с помощью алгебраических уравнений. Вы, наверное, по собственному опыту знаете, что этот второй путь более удобен и легок. А главное, научившись решать абстрактные, то есть отвлеченные от конкретных чисел алгебраические уравнения, вы тем самым сразу получаете ключ к решению бессчетного множества разнообразных арифметических задач. К тому же этот алгебраический ключ открывает вам доступ к решению таких сложных задач, которые арифметическим способом практически вообще не решаются.
Можно смело сказать, что способность к абстрактному мышлению, умение выделять главные, наиболее важные особенности предметов и явлений, умение находить универсальные методы, пригодные для решения сразу многих сложных задач, пользоваться одним обобщенным, абстрактным понятием вместо огромного множества конкретных, — все это составляет одну из главных особенностей человеческого ума. Постарайтесь найти время и серьезно задуматься над этим.
А сейчас нам пора возвращаться к транзисторным схемам. Познакомившись с абстрактным усилителем, соединяющим в себе главные особенности множества конкретных транзисторных схем, познакомившись с характерными для этого абстрактного усилителя физическими процессами и схемными решениями, мы с вами вместо долгой и утомительной осады совершим своего рода танковый прорыв, — быстро и легко войдем в огромную и прекрасную Страну Практических Транзисторных Схем.
Рис. 53.
Мастера, ремонтирующие приемники или телевизоры, любят говорить, что радиоэлектроника — это наука о контактах. Действительно, нарушение контактов в переключателях, соединительных фишках, контактных разъемах, ламповых панелях, наконец просто в местах плохой пайки — это довольно частое, если не самое частое повреждение аппаратуры. Устранить такое повреждение несложно, но обычно требуется большой опыт, чтобы найти место нарушения контакта.
И все же изречение «Радиоэлектроника — наука о контактах» не более чем шутка. Если говорить серьезно, то радиоэлектроника — это прежде всего наука об электрических цепях и сигналах.
Если вы свободно разбираетесь в сложных электрических цепях, знаете законы, которым они подчиняются, представляете себе, как проходят по этим цепям различные электрические сигналы, то вы легко разберетесь в работе любого радиоэлектронного устройства. Любое радиоэлектронное устройство — это прежде всего электрические цепи, в которых создаются и преобразуются электрические сигналы.