Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Эти успехи привели к тому, что возобновились ожесточенные споры ученых и философов, начатые 50 годами ранее Куртом Геделем и Аланом Тьюрингом. Используя разные методы, Гедель и Тьюринг сформулировали одинаковые определения формальной системы и одинаково трактовали неразрешимые задачи. Однако Гёдель различал формализм и логику, механизм и разум, а Тьюринг считал эти понятия полностью синонимичными. Доведя это сравнение до предела, в 1947 году Тьюринг сформулировал следующий постулат: наилучшей моделью человеческого мозга является универсальная машина, способная имитировать поведение любой программы. Эту универсальную машину сам Тьюринг ввел, чтобы справиться с проблемой разрешения Гильберта. Тьюринг считал, что на вопрос о том, могут ли компьютеры мыслить, можно дать ответ только по итогам эксперимента. В написанной в 1950 году статье «Вычислительные машины и разум», название которой вошло в историю, Тьюринг предложил «игру в имитацию», чтобы ученые посредством ряда вопросов, передаваемых в письменном виде, могли определить, с кем они взаимодействуют — с человеком или компьютером. Суть теста заключалась в том, что если машина во всем ведет себя подобно разумному существу, то простейшее объяснение этому состоит в том, что она действительно является разумной.

Также Тьюринг предложил, чтобы претендента на звание разумного существа попросили написать стихотворение или выполнить сложные вычисления. По сути, успешное выполнение первого задания заставит предположить, что претендент — человек, а быстрый ответ на второй вопрос заставит думать, что перед нами — компьютер. Конечно, многие вообще не способны писать стихи или же стихи поэта-авангардиста могут напоминать случайный набор слов. Существуют и настоящие люди-«компьютеры», способные перемножать огромные числа или раскладывать их на множители с фантастической, машинной скоростью. Но несмотря на все эти трудности, все согласны с тем, что если мы можем задать неограниченное число вопросов, то всегда отличим человека от машины. Пока что тест Тьюринга не смог пройти ни один компьютер. Более того, этот тест используется и для распознавания спама, который, как правило, генерируется компьютерами.

В декабре 1969 года, спустя пятнадцать лет после смерти Тьюринга, Гёдель счел, что обнаружил в его работе ошибку, которая могла иметь серьезные последствия. Тьюринг не учел, что разум непрерывно развивается. Во время демонстрации формальные системы не претерпевают изменений, равно как и машины во время расчетов, однако ничто не может гарантировать, что живой разум не изменяется во время рассуждений. Следовательно, компьютер никогда не сможет заменить человеческий разум. В любой книге по искусственному интеллекту рано или поздно встречается раздел, посвященный аргументам Гёделя, однако они относятся не к описанной нами ситуации, а к идее оксфордского философа Джона Лукаса, согласно которой теоремы о неполноте в некотором роде имеют отношение к возможности изобретения разумных машин. Любопытно, что Гёдель никогда всерьез не думал о том, что его открытия имеют отношение к структуре человеческого разума.

Наиболее известный аргумент противников искусственного интеллекта, как мы уже сказали, принадлежит философу Джону Лукасу, который до того, как посвятить себя философии и древней истории, изучал математику. В статье «Разум, машины и Гедель», представленной в 1959 году Оксфордскому философскому обществу, Лукас удивительно простым языком объяснил, почему человеческий разум нельзя свести к компьютеру: так как мы способны обучить машину аксиомам и правилам вывода арифметики, мы можем составить все формулы языка и попросить машину определить, какие из них являются истинными. Рано или поздно компьютер дойдет до высказывания «эта фраза недоказуема» и проведет остаток вечности в попытках доказать или опровергнуть ее, в то время как мы, люди, немедленно поймем, что эта фраза является неразрешимой. «Следовательно, машина попрежнему не будет адекватной моделью разума <…> который будет всегда находиться на шаг впереди любой закостенелой, омертвевшей формальной системы», — заключал Лукас.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное