Позабавимся теперь такой игрой. Возьмем двух математиков, один из которых будет Ученым, а другой — Природой. Природа выводит из принятых постулатов некую сложную математическую систему, которую Ученый должен отгадать, то есть воспроизвести. Осуществляется это так. Природа сидит в одной комнате и время от времени показывает Ученому через оконце карточку с несколькими числами, числа эти соответствуют тем изменениям в системе, конструируемой Природой, какие происходят на данном этапе. Можно представить себе, что Природа — это звездное небо, а Ученый — первый земной астроном. Поначалу Ученый не знает ничего, то есть не замечает никаких связей между показываемыми ему числами («между движениями небесных тел»), но спустя некоторое время ему кое-что приходит в голову. Наконец он начинает экспериментировать: он сам строит некоторую математическую систему и смотрит, будут ли числа, которые вскоре покажет ему через оконце Природа, совпадать с ожидаемыми. Но Природа показывает ему иные числа. Ученый делает новые попытки, и если он хороший математик, то через некоторое время ему удастся найти правильный путь, то есть сконструировать точно такую же математическую систему, какой пользуется Природа[208].
В этом случае мы имеем право сказать, что перед нами две одинаковые системы, то есть что математика Природы аналогична математике Ученого.
Повторим эту игру, изменив ее правила. Природа по-прежнему показывает Ученому числа (допустим, парами), но теперь они возникают не из математической системы. Они образуются каждый раз при помощи одной из пятидесяти операций, перечень которых мы передали Природе. Первые два числа она может выбрать совершенно произвольно. Следующие — уже нет: она выбирает одно из правил преобразования, содержащихся в перечне, любое, и согласно его виду делит, умножает, возводит в степень и тому подобное; результат Природа показывает Ученому. Затем она берет другое правило, снова преобразует (предыдущие результаты), а новый результат опять показывает Ученому — и так далее. Есть операции, предписывающие не производить никаких изменений. Есть операции, предписывающие что-то отнять, если у Природы свербит в левом ухе, а если нигде не свербит, то извлечь корень. Кроме того, есть две операции, обязательные в любом случае. Природа обязана всякий раз так располагать числа в паре, чтобы сначала показывалось меньшее число, кроме того, по крайней мере в одном из чисел рядом с нечетной цифрой должен всегда стоять нуль.
Хотя это, возможно, и покажется странным, но в порождаемой таким способом числовой последовательности проявится особая закономерность, и Ученый сможет эту закономерность открыть, иначе говоря, через некоторое время он научится предвидеть, но, разумеется, лишь приближенно, какие числа появятся в следующий раз. Поскольку, однако, вероятность правильного определения каждой следующей пары чисел резко уменьшается по мере того, как прогнозы пытаются распространить не только на ближайший этап, но и на всю их последовательность, Ученому придется создать несколько систем прогнозирования. Прогноз появления нуля рядом с нечетной цифрой будет вполне достоверным: нуль рядом с нечетной цифрой появляется в каждой паре, хотя и в разных местах. Достоверно также, что первое число всегда меньше второго. Все другие изменения подчиняются уже различным распределениям вероятностей. В действиях Природы заметен некий «порядок», но это не есть «порядок» одного определенного типа. В нем можно обнаружить различного рода закономерности, это в значительной мере зависит от продолжительности игры. Природа как бы демонстрирует наличие определенных «инвариантов», не подлежащих трансформациям. Ее будущие состояния, не очень отдаленные во времени, можно предвидеть с определенной вероятностью, но невозможно предвидеть очень далекие состояния.
В подобной ситуации Ученый мог бы подумать, что Природа применяет на самом деле лишь одну систему, но с таким количеством переменных, что он не может ее воссоздать, однако, по всей вероятности, он скорее придет к заключению, что Природа действует статистически. Тогда он использует соответствующие методы приближенных решений типа метода Монте-Карло. Самое интересное, однако, состоит в том, что Ученый может заподозрить существование «иерархии уровней Природы» (числа; над ними — операции с числами; еще выше — супероперации: расположение чисел в паре и введение нуля; следовательно, есть и различные уровни и «запреты», то есть «законы Природы»: «первое число никогда не может быть больше второго»), но вся эта эволюционирующая числовая система по своей формальной структуре не является единой математической системой.