Язык — это система символов, делающих возможным общение, так как эти символы поставлены в соответствие явлениям внешнего (гроза, собака) или внутреннего (печально, приятно) мира. Если бы не было действительных бурь и грусти, не было бы и этих слов. Повседневный язык нечеток, границы употребляемых в нем значений размыты, кроме того, язык как целое эволюционирует вместе с общественными и культурными изменениями. Дело в том, что язык является «неавтономной» структурой, так как языковые образования соотносятся с внеязыковыми ситуациями. В некоторых обстоятельствах язык может стать высокоавтономным («Крылышкуя золотописьмом тончайших жил», «Тарарахнул зензивер») как благодаря поэтическому словотворчеству (приведенный пример), так и благодаря тому, что он становится языком логики и подвергается строгой муштре. Однако всегда удается проследить его генетические связи с действительностью. Что касается символов математического языка, то они не относятся ни к чему, кроме него. Шахматы несколько похожи на математическую систему. Они являют собой замкнутую систему с собственными основными положениями и правилами поведения. Нельзя задавать вопрос об истинности шахмат, так же как и нельзя спрашивать об истинности чистой математики. Можно лишь спросить, разыграна ли данная математическая теория или данная партия шахмат правильно, то есть в соответствии с правилами. Однако шахматы не имеют никакого прикладного значения[158], в то время как математика такое значение имеет. Существует точка зрения, которая эту практическую пригодность математики объясняет очень просто. Природа по самому своему существу «математична». Так считали Джине и Эддингтон, я думаю, что и Эйнштейну такая точка зрения также не была чужда. Это следует из его высказывания: «Herr Gott ist raffiniert, aber boshaft ist er nicht»[159]. Запутанность Природы — так я понимаю эту фразу — можно разгадать, поймав ее в сети математических закономерностей. Если бы, однако, Природа была злорадной — аматематичной, — то она представляла бы собой как бы злобного лгуна, была бы нелогичной, противоречивой, по крайней мере, неопределенной в событиях, не поддавалась бы расчетам. Как известно, Эйнштейн до конца жизни возражал против принятия квантового индетерминизма и пытался в мысленных экспериментах свести его явления к детерминистическим законам.
Начиная с XVI века физики перетряхивают склады с залежами «пустых одежд», создаваемых математикой. Матричное исчисление было «пустой структурой», пока Гейзенберг не нашел «кусочка мира», к которому подходит эта пустая конструкция. Физика кишит такими примерами[160].
Процедура теоретической физики, а заодно и прикладной математики такова: эмпирическое утверждение заменяется математическим (то есть определенным математическим символом сопоставляются физические значения, вроде «массы», «энергии» и т.д.), полученное математическое выражение преобразуется в соответствии с законами
Итак, физику мы переводим на язык математики, с математикой обращаемся по-математически, результат снова переводим на язык физики и получаем соответствие с действительностью (конечно, при условии, что все действия мы проводим, опираясь на «доброкачественную» физику и математику). Это, безусловно, упрощение, так как современная физика настолько «пропитана» математикой, что даже исходные положения физики содержат ее в изобилии.
Нам кажется, что из-за универсальности связей Природы эмпирическое знание всегда может быть только «неполным, неточным и ненадежным», по крайней мере при сопоставлении его с чистой математикой, которая «полна, точна и надежна». Следовательно, это неправда, что математика, используемая физикой или химией, чтобы объяснить окружающий мир, рассказывает об этом мире слишком мало, что этот мир «утекает» сквозь ее формулы, неспособные охватить его достаточно всесторонне. Скорее все обстоит наоборот. Математика говорит о мире (то есть старается говорить) больше, чем можно о нем сказать, и это в настоящее время приносит науке много беспокойств, которые, безусловно, будут в конце концов преодолены. Может, когда-нибудь и матричное исчисление будет заменено в квантовой механике иным, позволяющим осуществлять более точные предсказания. Но тогда будет признана устаревшей только современная квантовая механика. Матричное исчисление не устареет, ибо эмпирические системы утрачивают свою актуальность, математические же — никогда. Их бессмертие — в их «пустоте».