ГЕОРГ КАНТОР (1845–1918) И ТЕОРИЯ МНОЖЕСТВ
Этот гениальный немецкий математик создал теорию множеств, чтобы дать более строгие определения многим математическим понятиям, в частности понятию бесконечности. Важный вклад в теорию множеств также внесли Фридрих Фреге и Юлиус Дедекинд. Благодаря Кантору стало возможным говорить, что «конечное множество — это множество, которое не является бесконечным» и что множество А является бесконечным, если между этим множеством и его подмножеством можно установить взаимно однозначное соответствие, то есть один к одному. Кантор прояснил вопрос, касающийся счетных бесконечных множеств, например множеств натуральных, целых или дробных чисел. Ему же принадлежит определение различных категорий бесконечностей (трансфинитные кардинальные и ординальные числа). Его идеи породили ожесточенные споры с другими математиками того времени (его основным противником стал Леопольд Кронекер), появились некоторые парадоксы, которые требовалось разрешить. Однако благодаря ему родилась красивая и фундаментальная теория множеств.
* * *
Для конечных множеств А = {a, b, с, d}, В = {а, Ь, е, f} обычно используются диаграммы Венна. На этих диаграммах элементы множеств представлены в виде отдельных точек и замкнутых кривых, ограничивающих группы точек.
Для множеств А, В их декартово произведение А x В определяется так:
то есть как множество упорядоченных пар (а, Ь). Это обозначение связано с традицией, начатой Рене Декартом, обозначать точки на плоскости (х, у) или в пространстве (х, у, z) упорядоченными парами или тройками чисел — координатами. Заметим, что слова по сути тоже представляют собой упорядоченные множества букв.
Декартовы координаты на плоскости и в пространстве.
На основе декартовых произведений вида А x A, то есть произведений множества на само себя, можно определить базовое понятие отношения R как подмножества А х А. Иными словами, отношение указывает элементы А, связанные между собой.
Если (а, Ь) принадлежит R, то между а и Ь имеется отношение. Если (а, с) не принадлежит R, то между а и с отсутствует отношение. Так, для данного отношения R для каждого элемента а имеет смысл рассматривать класс всех элементов, для которых установлено отношение с а. Если (а, Ь) принадлежит R, то это отношение также записывается в форме «а R Ь».
Рассмотрим в качестве примера множество А = {2, 3, 4, 5, 6, 7, 8, 9, 10} и отношение R на множестве A: a R Ь, если а кратно Ь. Упорядоченные пары для этого отношения можно представить в декартовых координатах.
Представление отношения в декартовых координатах.
Также можно использовать ориентированный граф, как показано ниже:
Направленный граф, представляющий отношение.
Отношения эквивалентности
Применительно к классификациям на множестве особый интерес представляют так называемые отношения эквивалентности R на множестве А. Они обладают тремя свойствами.
1. Рефлексивностью: a R а.
2. Симметричностью: если a R Ь, то b R а.
3. Транзитивностью: если a R b и b R с, то a R с.
Иными словами, отношение существует между любым элементом и им самим, это отношение обладает симметричностью и транзитивностью для троек элементов.
Если отношение R удовлетворяет всем этим свойствам, то множество А разделено на классы. Подобные отношения на конечных множествах можно представить с помощью графов: элементы множеств будут представлены в виде точек, соединенных линиями со стрелками, которые будут обозначать отношения.
Представление свойств отношения эквивалентности в виде графов.
Так как отношение эквивалентности делает возможным классификацию элементов множества, можно построить схемы, подобные тем, что показаны на рисунке.