Last issue, in “A New, Powerful Radiation Source Within the Solar System,” Dr. Harry Peterson of Mount Wilson Observatory published a set of data accidentally obtained while observing Jupiter’s precession on June 12 and July 2, during which strong electromagnetic radiation was detected, lasting 81 seconds and 76 seconds, respectively. The data included the frequency ranges of the radiation as well as other parameters. During the radio outbursts, Peterson also observed certain changes in the Great Red Spot. This discovery drew a lot of interest from planetary scientists. In this issue, G. McKenzie’s article argues that it was a sign of fusion starting within Jupiter’s core. In the next issue we will publish Inoue Kumoseki’s article, which attributes the Jovian radio outbursts to a more complicated mechanism—the movements of internal metallic hydrogen plates—and gives a complete mathematical description.
Ye clearly remembered the two dates noted in the paper. During those windows, the Red Coast monitoring system had also received strong interference from solar outages. She checked the operations diary and confirmed her memory. The times were close, but the solar outages had occurred sixteen minutes and forty-two seconds after the arrival of the Jovian radio outbursts on Earth.
She drew a big triangle on the blackboard with the sun, the Earth, and Jupiter at the vertices. She marked the distances along the three edges, and wrote down the two arrival times next to the Earth. From the distance between the Earth and Jupiter it was easy to figure out the time it took for the radio outbursts to travel between the two. Then she calculated the time it would take the radio outbursts to go from Jupiter to the sun, and then from the sun to the Earth. The difference between the two was exactly sixteen minutes and forty-two seconds.
Ye referred to her solar structure mathematical model and tried to find a theoretical explanation. Her eyes were drawn to her description of what she called “energy mirrors” within the solar radiation zone.
Energy produced by reaction within the solar core is initially in the form of high-energy gamma rays. The radiation zone, the region of the sun’s interior that surrounds the core, absorbs these high-energy photons and re-emits them at a slightly lower energy level. After a long period of successive absorption and re-emission (a photon might take a thousand years to leave the sun), gamma rays become x-rays, extreme ultraviolet, ultraviolet, then eventually turn into visible light and other forms of radiation.
Such were the known facts about the sun. But Ye’s model led to a new result: As solar radiation dropped through these different frequencies on its way through the radiation zone, there were boundaries between the subzones for each type of radiation. As energy crossed each boundary, the radiation frequency stepped down a grade sharply. This was different from the traditional view that the radiation frequency lowered gradually as energy passed from the core outwards. Her calculations showed that these boundaries would reflect radiation coming from the lower-frequency side, which was why she named the boundaries “energy mirrors.”
Ye had carefully studied these membranelike boundary surfaces suspended in the high-energy plasma ocean of the sun and discovered them to be full of wonderful properties. One of the most incredible characteristics she named “gain reflectivity.” However, the characteristic was so bizarre that it was hard to confirm, and even Ye herself didn’t quite believe it was real. It seemed more likely an artifact of some error in the dizzying, complex calculations.
But now, Ye made the first step in confirming her guess about the gain reflectivity of solar energy mirrors: The energy mirrors not only reflected radiation coming from the lower-frequency side, but amplified it. All the mysterious sudden fluctuations within narrow frequency bands that she had observed were in fact the result of other radiation coming from space being amplified after reflecting off an energy mirror in the sun. That was why there were no observable disturbances on the surface of the sun.
This time, after the Jovian radio outbursts reached the sun, they were re-emitted, as if by a mirror, after being amplified about a hundred million times. The Earth received both sets of emissions, before and after the amplification, separated by sixteen minutes and forty-two seconds.
The sun was an amplifier for radio waves.