It has not been proven whether mirror neurons are responsible for these earliest imitative behaviors, but it’s a fair bet. The ability would depend on mapping the visual appearance of the mother’s protruding tongue or smile onto the child’s own motor maps, controlling a finely adjusted sequence of facial muscle twitches. As I noted in my BBC Radio Reith Lectures in 2003, entitled “The Emerging Mind,” this sort of translation between maps is precisely what mirror neurons are thought to do, and if this ability is innate, it is truly astonishing. I’ll call it the “sexy” version of the mirror-neuron function.
Some people argue that the complex computational ability for true imitation—based on mirror neurons—emerges only later in development, whereas the tongue protrusion and first smile are merely hardwired reflexes in response to simple “triggers” from mom, the same way a cat’s claws come out when it sees a dog. The only way to distinguish the sexy from the mundane explanation would be to see whether a baby can imitate a nonstereotyped movement it is unlikely to ever encounter in nature, such as an asymmetrical smile, a wink, or a curious distortion of the mouth. This couldn’t be done by a simple hardwired reflex. The experiment would settle the issue once and for all.
INDEPENDENT OF THE question of whether mirror neurons are innate or acquired, let us now take a closer look at what they actually do. Many functions were proposed when they were first reported, and I’d like to build on these earlier speculations.2 Let’s make a list of things they might be doing. Bear in mind they may have originally evolved for purposes other than the ones listed here. These secondary functions may simply be a bonus, but that doesn’t make them any less useful.
First, and most obvious, they allow you to figure out someone else’s intentions. When you see your friend Josh’s hand moves toward the ball, your own ball-reaching neurons start firing. By running this virtual simulation of being Josh, you get the immediate impression that he is intending to reach for the ball. This ability to entertain a theory of mind may exist in the great apes in rudimentary form, but we humans are exceptionally good at it.
Second, in addition to allowing us to see the world from another person’s
As a corollary to adopting the other’s point of view, you can also see yourself as others see you—an essential ingredient of self-awareness. This is seen in common language: When we speak of someone being “self-conscious,” what we really mean is that she is conscious of someone else being conscious of her. Much the same can be said for a word like “self-pity.” I will return to this idea in the concluding chapter on consciousness and mental illness. There I will argue that other-awareness and self-awareness coevolved in tandem, leading to the I-you reciprocity that characterizes humans.
A less obvious function of mirror neurons is abstraction—again, something humans are especially good at. This is well illuminated by the bouba-kiki experiment discussed discussed in Chapter 3 in the context of synesthesia. To reiterate, over 95 percent of people identify the jagged form as the “kiki” and the curvy one as “bouba.” The explanation I gave is that the sharp inflections of the jagged shape mimic the inflection of the sound