When Chris saw the various possibilities, with varying wormhole length and lensing width, his choice was unequivocal. For medium and large length the multiple images seen through the wormhole would be confusing to a mass audience, so he made
The resulting wormhole is the one at the top of Figure 15.2. And in
On April 10, 2014, I got an urgent phone call. Chris was having trouble with visualizing the
Using my equations, Paul’s team had produced visualizations for wormhole trips with various wormhole lengths and lensing widths. For the short, modest-lensing wormhole depicted in the movie, the trip was quick and uninteresting. For a long wormhole, it looked like traveling through a long tunnel with walls whizzing past, too much like things we’ve seen in movies before. Chris showed me many variants with many bells and whistles, and I had to agree that none had the compelling freshness that he wanted. After sleeping on it, I still had no magic-bullet solution.
The next day Chris flew to London and closeted himself with Paul’s Double Negative team, searching for a solution. In the end, they were forced to abandon my wormhole equations and, in Paul’s words, “go for a much more abstract interpretation of the wormhole’s interior,” an interpretation informed by simulations with my equations, but altered significantly to add artistic freshness.
When I experienced the wormhole trip in an early screening of
What did you think?
16
Discovering the Wormhole: Gravitational Waves
How might humans have discovered
I imagine that decades before the movie begins, when Professor Brand was in his twenties, he was deputy director of a project called LIGO: The Laser Interferometer Gravitational Wave Observatory (Figure 16.1). LIGO was searching for ripples in the shape of space arriving at Earth from the distant universe. These ripples, called gravitational waves, are produced when black holes collide with each other, when a black hole tears a neutron star apart, when the universe was born, and in many other ways.
One day in 2019, LIGO was hit by a burst of gravitational waves far stronger than any ever before seen (Figure 16.2). The waves oscillated with an amplitude that grew and fell several times, and then cut off suddenly. The entire burst lasted for only a few seconds.