Second, with two of my students, Mark Morris and Ulvi Yurtsever, I published two technical articles about traversable wormholes. In our articles, we challenged our physicist colleagues to figure out whether the combined quantum laws and relativistic laws permit a very advanced civilization to collect enough exotic matter inside a wormhole to hold it open. This triggered a lot of research by a lot of physicists; but today, nearly thirty years later, the answer is still unknown. The preponderance of the evidence suggests that the answer may be NO, so traversable wormholes are impossible. But we are still far from a final answer. For details, check out Time Travel and Warp Drives by my physicist colleagues Allen Everett and Thomas Roman (Everett and Roman 2012).
What Does a Traversable Wormhole Look Like?What does a traversable wormhole look like to people like us who live in our universe? I can’t answer definitively. If a wormhole can be held open, the precise details of how remain a mystery, so the precise details of the wormhole’s shape are unknown. For black holes, by contrast, Roy Kerr has given us the precise details, so I can make the firm predictions described in Chapter 8.
So for wormholes, I can make only an educated guess, but one in which I have considerable confidence. Hence the symbol on this section’s header.
Mouth in California Desert | Mouth in DublinFig. 14.6. The images seen through a wormhole’s two mouths. [Left photo by Catherine MacBride; right photo by Mark Interrante.]Imagine we have a wormhole here on Earth, stretching through the bulk from Grafton Street in Dublin, Ireland, to the desert in Southern California. The distance through the wormhole might be only a few meters.
The entrances to the wormhole are called “mouths.” You are sitting in a sidewalk cafe alongside the Dublin mouth. I am standing in the desert beside the California mouth. Both mouths look rather like crystal balls. When I look into my California mouth, I see a distorted image of Grafton Street, Dublin (Figure 14.6). That image is brought to me by light that travels through the wormhole from Dublin to California, rather like light traveling through an optical fiber. When you look into your Dublin mouth, you see a distorted image of Joshua trees (cactus trees) in the California desert.
Can Wormholes Exist Naturally, as Astrophysical Objects?In Interstellar, Cooper says, “A wormhole isn’t a naturally occurring phenomenon.” I agree with him completely! If traversable wormholes are allowed by the laws of physics, I think it extremely unlikely they can exist naturally, in the real universe. I must confess, though, that this is little more than a speculation, not even an educated guess. Maybe a highly educated speculation, but speculation nonetheless, so I labeled this section .
Why am I so pessimistic about natural wormholes?
We see no objects in our universe that could become wormholes as they age. By contrast, astronomers see huge numbers of massive stars that will collapse to form black holes when they have exhausted their nuclear fuel.
On the other hand, there is reason to hope that wormholes do exist naturally on submicroscopic scales in the form of “quantum foam” (Figure 14.7). This foam is a hypothesized network of wormholes that is continually fluctuating in and out of existence in a manner governed by the ill-understood laws of quantum gravity (Chapter 26). The foam is probabilistic in the sense that, at any moment, there is a certain probability the foam has one form and also a probability that it has another form, and these probabilities are continually changing. And the foam is truly tiny: the typical length of a wormhole would be the so-called Planck length, 0.000000000000000000000000000000001 centimeters; a hundredth of a billionth of a billionth the size of the nucleus of an atom. That’s small!!
Back in the 1950s John Wheeler gave persuasive arguments for quantum foam, but there is now evidence that the laws of quantum gravity might suppress the foam and might even prevent it from arising.
If quantum foam does exist, I hope there is a natural process by which some of its wormholes can spontaneously grow to human size or bigger, and even did so during the extremely rapid “inflationary” expansion of the universe, when the universe was very, very young. However, we physicists have no hint of any evidence at all that such natural enlargement can or did occur.
Fig. 14.7. Quantum foam. [Drawing by Matt Zimet based on a sketch by me; from my book Black Holes & Time Warps: Einstein’s Outrageous Legacy.]