Читаем The Science of Interstellar полностью

Having three different viewpoints on the same phenomenon can be extremely valuable. Scientists and engineers spend most of their lives trying to solve puzzles. The puzzle may be how to design a spacecraft. Or it may be figuring out how black holes behave. Whatever the puzzle may be, if one viewpoint doesn’t yield progress, another viewpoint may. Peering at the puzzle first from one viewpoint and then from another can often trigger new ideas. This is what Professor Brand does, in Interstellar, when trying to understand and harness gravitational anomalies (Chapters 24 and 25). This is what I’ve spent most of my adult life doing.

<p>5</p><p>Black Holes</p>

The black hole Gargantua plays a major role in Interstellar. Let’s look at the basic facts about black holes in this chapter and then focus on Gargantua in the next.

First, a weird claim: Black holes are made from warped space and warped time. Nothing else—no matter whatsoever.

Now some explanation.

Ant on a Trampoline: A Black Hole’s Warped Space

Imagine you’re an ant and you live on a child’s trampoline—a sheet of rubber stretched between tall poles. A heavy rock bends the rubber downward, as shown in Figure 5.1. You’re a blind ant, so you can’t see the poles or the rock or the bent rubber sheet. But you’re a smart ant. The rubber sheet is your entire universe, and you suspect it’s warped. To determine its shape, you walk around a circle in the upper region measuring its circumference, and then walk through the center from one side of the circle to the other, measuring its diameter. If your universe were flat, then the circumference would be π = 3.14159… times the diameter. But the circumference, you discover, is far smaller than the diameter. Your universe, you conclude, is highly warped!

Fig. 5.1. An ant on a warped trampoline. [My own hand sketch.]

Space around a nonspinning black hole has the same warping as the trampoline: Take an equatorial slice through the black hole. This is a two-dimensional surface. As seen from the bulk, this surface is warped in the same manner as the trampoline. Figure 5.2 is the same as Figure 5.1, with the ant and poles removed and the rock replaced by a singularity at the black hole’s center.

Fig. 5.2. The warped space inside and around a black hole, as seen from the bulk. [My own hand sketch.]

The singularity is a tiny region where the surface forms a point and thus is “infinitely warped,” and where, it turns out, tidal gravitational forces are infinitely strong, so matter as we know it gets stretched and squeezed out of existence. In chapters 26, 28, and 29, we see that Gargantua’s singularity is somewhat different from this one, and why.

For the trampoline, the warping of space is produced by the rock’s weight. Similarly, one might suspect, the black hole’s space warp is produced by the singularity at its center. Not so. In fact, the hole’s space is warped by the enormous energy of its warping. Yes, that’s what I meant to say. If this seems a bit circular to you, well, it is, but it has deep meaning.

Just as it requires a lot of energy to bend a stiff bow in preparation for shooting an arrow, so it requires a lot of energy to bend space; to warp it. And just as the bending energy is stored in the bent bow (until the string is released and feeds the bow’s energy into the arrow), so the warping energy is stored in the black hole’s warped space. And for a black hole, that energy of warping is so great that it generates the warping.

Warping begets warping in a nonlinear, self-bootstrapping manner. This is a fundamental feature of Einstein’s relativistic laws, and so different from everyday experience. It’s somewhat like a hypothetical science-fiction character who goes backward in time and gives birth to herself.

This warping-begets-warping scenario does not happen in our solar system hardly at all. Throughout our solar system the space warps are so weak that their energy is minuscule, far too small to produce much bootstrapped warping. Almost all the space warping in our solar system is produced directly by matter—the Sun’s matter, the Earth’s matter, the matter of the other planets—by contrast with a black hole where the warping is fully responsible for the warping.

Event Horizon and Warped Time

When you first hear mention of a black hole, you probably think of its trapping power as depicted in Figure 5.3, not its warped space.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука