Читаем The Science of Interstellar полностью

Neutron stars have very strong magnetic fields, whose force lines are donut-shaped, like the Earth’s. Fast-moving particles trapped in a neutron star’s magnetic field light up the force lines, producing the blue rings in Figure 2.10. Some of the particles are liberated and stream out the field’s poles, producing the two violet jets in the figure. These jets consist of all types of radiation: gamma rays, X-rays; ultraviolet, visual, infrared, and radio waves. As the star spins, its luminous jets sweep around the sky above the neutron star, like a searchlight. Every time a jet sweeps over the Earth, astronomers see a pulse of radiation, so astronomers have named these objects “pulsars.”

The universe contains other kinds of fields (collections of force lines) in addition to magnetic fields. One example is electric fields (collections of electric force lines that, for example, drive electric current to flow through wires). Another example is gravitational fields (collections of gravitational force lines that, for example, pull us to the Earth’s surface).

The Earth’s gravitational force lines point radially into the Earth and they pull objects toward the Earth along themselves. The strength of the gravitational pull is proportional to the density of the force lines (the number of lines passing through a fixed area). As they reach inward, the force lines pass through spheres of ever-decreasing area (dotted red spheres in Figure 2.11), so the lines’ density must go up inversely with the sphere’s area, which means the Earth’s gravity grows as you travel toward it, as 1/(the red spheres’ area). Since each sphere’s area is proportional to the square of its distance r from the Earth’s center, the strength of the Earth’s gravitational pull grows as 1/r2. This is Newton’s inverse square law for gravity—an example of the fundamental laws of physics that are Professor Brand’s passion in Interstellar and our next foundation for Interstellar’s science.

Fig. 2.11. The Earth’s gravitational force lines.<p>3</p><p>The Laws That Control the Universe</p>Mapping the World and Deciphering the Laws of Physics

Physicists have struggled from the seventeenth century onward to discover the physical laws that shape and control our universe. This has been like European explorers struggling to discover the Earth’s geography (Figure 3.1).

By 1506 Eurasia was coming into focus and there were glimmers of South America. By 1570 the Americas were coming into focus, but there was no sign of Australia. By 1744 Australia was coming into focus, but Antarctica was terra incognita.

Similarly (Figure 3.2), by 1690 the Newtonian laws of physics had come into focus. With concepts such as force, mass, and acceleration and equations that link them, such as F = ma, the Newtonian laws accurately describe the motion of the Moon around the Earth and the Earth around the Sun, the flight of an airplane, the construction of a bridge, and collisions of a child’s marbles. In Chapter 2 we briefly met an example of a Newtonian law, the inverse square law for gravity.

By 1915 Einstein and others had found strong evidence that the Newtonian laws fail in the realm of the very fast (objects that move at nearly the speed of light), the realm of the very large (our universe as a whole), and the realm of intense gravity (for example, black holes). To remedy these failures Einstein gave us his revolutionary relativistic laws of physics (Figure 3.2). Using the concepts of warped time and warped space (which I describe in the next chapter), the relativistic laws predicted and explained the expansion of the universe, black holes, neutron stars, and wormholes.

1506—Martin Waldseemuller1570—Abraham Ortelius1744—Emanuel BowenFig. 3.1. World maps from 1506 to 1744.

By 1924 it was crystal clear that the Newtonian laws also fail in the realm of the very small (molecules, atoms, and fundamental particles). To deal with this Niels Bohr, Werner Heisenberg, Erwin Schrödinger, and others gave us the quantum laws of physics (Figure 3.2). Using the concepts that everything fluctuates randomly at least a little bit (which I describe in Chapter 26), and that these fluctuations can produce new particles and radiation where before there were none, the quantum laws have brought us lasers, nuclear energy, light-emitting diodes, and a deep understanding of chemistry.

Fig. 3.2. The physical laws that govern the universe.
Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука