The Atlas was the United States’ first intercontinental ballistic missile (ICBM), built by the Convair division of General Dynamics. Its two Rocketdyne booster engines each produced 154,000 pounds of thrust, and its central sustainer engine generated 57,000 pounds. Two small vernier engines used for guidance added another 1,000 pounds of thrust each. The Atlas was thin-skinned, basically a steel balloon. Its fuel combination of liquid oxygen and RP-1 kerosene had to be kept under pressure or the missile would crumple like a crushed soft-drink can. It was a very fragile vehicle that had been under development since the mid-1950s and had yet to produce a record of sustained success.
The sight of the Atlas on the launch pad was dramatic enough to have been designed by Disney. Searchlights played on the silver rocket, and clouds of water vapor came off it from the liquid oxygen, or lox, cooled to 293 degrees below zero Fahrenheit.
The count went down. Suddenly the engines lit, and the rocket lifted off slowly in a blast of orange flame and billowing smoke. The powerful racket of the engines rolled across the palmettos like a wind. We watched it gain speed, a brilliant phoenix rising into the night sky.
A minute after lifting off, it blew. The explosion looked like a hydrogen bomb going off right over our heads, so close we ducked before we realized the flight path would carry the debris out over the Atlantic. We stood in stunned silence after the roar of the explosion faded. Even Wally didn’t have one of his usual wisecracks. Then Al said, “Well, I’m glad they got that out of the way.”
We were a sober group of astronauts when we sat down the next morning with B. G. McNabb and his engineers in the Convair launch team. They had little to tell us, except that they were analyzing photo and telemetry data from the launch.
Ten days later, on May 28, NASA launched an Army Jupiter missile from Cape Canaveral. In the nose cone were Able, a Rhesus monkey, and Baker, a South American squirrel monkey, both festooned with electrodes to register the effects of weightlessness. The missile achieved an altitude of three hundred miles, and the nose cone was recovered from the Atlantic Ocean with both monkeys alive.
Able died four days later from the effects of anesthesia given for removal of the electrodes. Nevertheless, the heart stoppage and brain alterations that some doctors had thought might result from weightlessness apparently had not occurred. At the very least, it was clear living beings could reach space and return alive – if the rockets that carried them didn’t blow up.
In September 1959 the Soviets reasserted their lead. They launched Luna 2. Luna 2 was an unmanned probe which crash landed on the moon. In October 1959 another Soviet probe, Luna 3, sent back pictures of the dark side of the moon. On 4 December NASA launched and recovered a monkey named Sam to an altitude of 55 miles.
The German-born engineer, then in his late forties, was a handsome, broad-shouldered man with thick dark hair. Von Braun had been a devoted Nazi during World War II, but his rocket expertise was valuable to the United States, and when the war ended he and members of his team of German scientists were brought to this country Other scientists went to the Soviets. Whatever anyone thought of von Braun’s previous allegiances, he had a well-deserved reputation for heading an effective rocket team. He had led the development of the German V-2 guided ballistic missiles that had rained destruction on England and Allied-held Europe near the end of the war. In the new postwar equation, the V-2 became the basis for the Redstone, which gave the United States its effective intermediate-range ballistic missile in the competition with the Soviets. Modifications would allow it to carry a Mercury capsule. Von Braun spoke of men riding the Redstone and other rockets into space and someday to the moon, of humans pitting themselves against enormous odds for the sake of discovery.
His library showed him to be a man whose interests were not confined to rocket science. I wandered into the book-lined room expecting to find nothing but tomes on engineering, astronomy, physics, and other technical matters. There were many of those. But I was impressed to find even more extensive collections in fields such as religion, comparative religion, philosophy, history, and government.