The spacecraft was deliberately put on a collision course with Jupiter because the onboard propellant was nearly depleted. Consequently it was necessary to eliminate any chance of an unwanted impact between the spacecraft and Jupiter’s moon Europa, which Galileo discovered is likely to have a subsurface ocean. Without propellant it would be impossible to control the spacecraft because it would not be able to point its antenna toward Earth or adjust its trajectory. The possibility of life existing on Europa is so compelling and has raised so many unanswered questions that it is prompting plans for future spacecraft to return to the icy moon.
The exciting list of discoveries started even before Galileo got a glimpse of Jupiter. As it crossed the asteroid belt in October 1991, Galileo snapped images of Gaspra, returning the first ever close-up image of an asteroid. Less then a year later, the spacecraft got up close to yet another asteroid, Ida, revealing it had its own little “moon”, Dactyl, the first known moon of an asteroid. In 1994 the spacecraft made the only direct observation of a comet impacting a planet – comet Shoemaker-Levy 9’s collision with Jupiter.
The descent probe made the first in-place studies of the planet’s clouds and winds, and it furthered scientists’ understanding of how Jupiter evolved. The probe also made composition measurements designed to assess the degree of evolution of Jupiter compared to the sun.
Galileo made the first observation of ammonia clouds in another planet’s atmosphere. It also observed numerous large thunderstorms on Jupiter many times larger than those on Earth, with lightning strikes up to 1,000 times more powerful than on Earth. It was the first spacecraft to dwell in a giant planet’s magnetosphere long enough to identify its global structure and to investigate the dynamics of Jupiter’s magnetic field. Galileo determined that Jupiter’s ring system is formed by dust kicked up as interplanetary meteoroids smash into the planet’s four small inner moons. Galileo data showed that Jupiter’s outermost ring is actually two rings, one embedded within the other.