In biology, Darwin and Mendel came to define the 19th century as the era of evolution and genetics; Watson and Crick defined the 20th century as the era of DNA, and the functional understanding of how genetics and evolution interact. But in the 21st century it is the new scientific discipline of epigenetics that is unravelling so much of what we took as dogma and rebuilding it in an infinitely more varied, more complex and even more beautiful fashion.
The world of epigenetics is a fascinating one. It’s filled with remarkable subtlety and complexity, and in Chapters 3 and 4 we’ll delve deeper into the molecular biology of what’s happening to our genes when they become epigenetically modified. But like so many of the truly revolutionary concepts in biology, epigenetics has at its basis some issues that are so simple they seem completely self-evident as soon as they are pointed out. Chapter 1 is the single most important example of such an issue. It’s the investigation which started the epigenetics revolution.
Notes on nomenclature
There is an international convention on the way that the names of genes and proteins are written, which we adhere to in this book.
Gene names and symbols are written in
The symbols for human genes and proteins are written in upper case. For other species, such as mice, the symbols are usually written with only the first letter capitalised.
This is summarised for a hypothetical gene in the following table.
Human
Other e.g. mouse
Gene name
Gene symbol
Protein name
SO DAMNED COMPLICATED
So Damned Complicated
Protein symbol
SDC
Sdc
Like all rules, however, there are a few quirks in this system and while these conventions apply in general we will encounter some exceptions in this book.
Chapter 1. An Ugly Toad and an Elegant Man
Like the toad, ugly and venomous,
Wears yet a precious jewel in his head
Humans are composed of about 50 to 70 trillion cells. That’s right, 50,000,000,000,000 cells. The estimate is a bit vague but that’s hardly surprising. Imagine we somehow could break a person down into all their individual cells and then count those cells, at a rate of one cell every second. Even at the lower estimate it would take us about a million and a half years, and that’s without stopping for coffee or losing count at any stage. These cells form a huge range of tissues, all highly specialised and completely different from one another. Unless something has gone very seriously wrong, kidneys don’t start growing out of the top of our heads and there are no teeth in our eyeballs. This seems very obvious – but why don’t they? It’s actually quite odd, when we remember that every cell in our body was derived from the division of just one starter cell. This single cell is called the zygote. A zygote forms when one sperm merges with one egg. This zygote splits in two; those two cells divide again and so on, to create the miraculous piece of work which is a full human body. As they divide the cells become increasingly different from one another and form specialised cell types. This process is known as differentiation. It’s a vital one in the formation of any multicellular organism.
If we look at bacteria down a microscope then pretty much all the bacteria of a single species look identical. Look at certain human cells in the same way – say, a food-absorbing cell from the small intestine and a neuron from the brain – and we would be hard pressed to say that they were even from the same planet. But so what? Well, the big ‘what’ is that these cells started out with exactly the same genetic material as one another. And we do mean exactly – this has to be the case, because they came from just one starter cell, that zygote. So the cells have become completely different even though they came from one cell with just one blueprint.
One explanation for this is that the cells are using the same information in different ways and that’s certainly true. But it’s not necessarily a statement that takes us much further forwards. In a 1960 adaptation of H. G. Wells’s