The issue came into clear focus for me in 1980. In April of that year, Karel gave a memorable review talk at an international conference in Oxford, during which I had an opportunity to discuss with him the ideas that Bruno and I were developing. He invited me to come to Salt Lake City, which I did in the late fall, just in time to see the pale gold of the aspens in the Wasatch mountains. Getting to know Utah and the magnificent deserts of the western United States has been a great bonus from the study of physics for me and my family. But as this is a book about physics, not travel, I had better not digress.
To come straight to the point, it soon became clear in the discussions with Karel that the idea of best matching and the whole way of thinking about duration as a measure of difference were already both contained within the mathematics of general relativity, though not in a transparent form. These facts are still not widely known, mainly, I think, because of a certain inertia. General relativity was discovered as a theory of four-dimensional space-time, and that is still essentially the way it is presented. The fact that it is simultaneously a dynamical theory describing the changes of three-dimensional things is given much less weight. This is why so few people are aware that there is such a deep issue and crisis about the nature of time at the heart of general relativity.
I think that the nature of the problem can be explained to a non-scientist. Here, at least, is my attempt. Figure 29 is a very schematic representation of the three different kinds of four-dimensional space-time that have been considered in this book. As usual, only one of the three dimensions of space is shown. It and its material contents are represented by the horizontal direction, while time runs vertically. Thus, the more or less horizontal lines and curves in the three parts of the diagram represent space and its material contents at different ‘times’. They are each Nows in my sense. As we have seen, Newtonian space-time is like a pack of ordinary cards. Each card is a Now, and they are all horizontal. I called Minkowski space-time a magical pack of cards because its Nows, or hyperplanes of simultaneity, can be drawn in different ways. Depending on the Lorentz frame that is chosen, different families of parallel Nows are obtained. Time has become relative to the frame. In general relativity, this relativity of time is taken much further: provided the Nows do not cut through the light cone, they can be drawn in an immense number of different ways. It is the complete absence of uniqueness in the way this is done that led Einstein to comment that the concept of Now does not exist in modern physics. However, this reflects the space-time viewpoint. The dynamical viewpoint puts things in a different perspective.
Figure 29 The three different kinds of space-time: on the left, Newtonian space-time, with ‘horizontal’ Nows; in the middle, Minkowski space-time, with alternative ‘tilted’ Nows; on the right, the space-time of general relativity, with Nows running in arbitrary directions.
To see this, suppose we consider two neighbouring Nows, as shown in Figure 30, in a space-time that satisfies the equations of general relativity. Each Now is a 3-space with its own intrinsic three-dimensional geometry and material contents embedded within space-time. This four-dimensional space-time has its own geometry too, and permits the construction of ‘struts’ between the two Nows. The struts are the world lines of bodies that follow geodesics in space-time, leaving the earlier Now along the space-time direction that is perpendicular to it at the point of departure. Each ‘strut’ is, so to speak, erected on the first Now. It will pierce the second Now at some point. Taken altogether, such struts uniquely determine a pairing of each point of the first Now with a point of the second Now. They do something else, too. If a clock travels along each strut between its two ends, it will measure the proper time between them as it goes. Because the two Nows have been chosen arbitrarily, the proper time will in general be different for each strut.
Figure 30 The two continuous curves represent (in one dimension) the two slightly different 3-spaces mentioned in the text; the more or less vertical lines are the ‘struts’.