Frustratingly little progress has been made. However, in 1967 a possible picture did emerge from a paper by the American Bryce DeWitt. He found an equation that, if his reasoning is sound, describes the whole universe – both atoms and galaxies – in a unified manner. Because John Wheeler, the American physicist who coined the term ‘black hole’, played a major part in its discovery, this equation is called the Wheeler-DeWitt equation. It is controversial in at least three respects. First, many experts believe that the very derivation of the equation is flawed – that it was obtained by an invalid procedure. Second, the equation is not yet even properly defined, as there are still many technical difficulties to be overcome. In fact, it is more properly regarded as a conjecture: a tentative proposal for an equation that is not yet proved. And third, the experts argue interminably over what meaning it might have and whether it can ever be promoted to the status of a bona fide equation. Ironically, DeWitt himself thinks that it is probably not the right way to go about things, and he generally refers to it as ‘that damned equation’. Many physicists feel that a different route, through so-called superstring theory, which it is hoped will establish a deep unity between all the forces of nature, is the correct way forward. That many of the best physicists have concentrated on superstring theory is probably the main reason why the ‘crisis of time’ brought to light by the Wheeler-DeWitt equation has not attracted more attention. However, there is no doubt that the equation reflects and unifies deep properties of both quantum theory and general relativity. Quite a sizeable minority of experts take the equation seriously. In particular, much of the work done by Stephen Hawking in the last twenty years or so has been based on it, though he has his own special approach to the problem of time that it raises.
For now, all I want to say about the Wheeler-DeWitt equation is that if one takes it seriously and looks for its simplest interpretation, the picture of the universe that emerges is like the contents of the Timeless Theory bag. For a long time, physicists shied away in distrust from its apparently timeless nature, but during the last fifteen years or so a small but growing number of physicists, myself included, have begun to entertain the idea that time truly does not exist. This also applies to motion: the suggestion is that it too is pure illusion. If we could see the universe as it is, we should see that it is static. Nothing moves, nothing changes. These are large claims, and the bulk of my book will discuss the arguments from physics (presented as simply as I can) that lead me and others to such conclusions. At the end, I shall outline, through the notion of time capsules, a theory of how a static universe can nevertheless appear to teem with motion and change.
Now I want to give you a better feel for what a timeless universe could be like. What we need first is a proper way to think about Nows.
THE ULTIMATE ARENA
One issue that runs through this book is this: what is the ultimate arena of the universe? Is it formed by space and time (space-time), or something else? This is the issue raised by Dirac’s sentence I quoted in the Preface: ‘This result has led me to doubt how fundamental the four-dimensional requirement in physics is.’ I believe that the ultimate arena is not space-time. I can already begin to give you an idea of what might come in its place.
I illustrated the Newtonian scheme by a model universe of just three particles. Its arena is absolute space and time. The Newtonian way of thinking concentrates on the individual particles: what counts are their positions in space and time. However, Newton’s space and time are invisible. Could we do without them? If so, what can we put in their place? An obvious possibility is just to consider the triangles formed by the three particles, each triangle representing one possible relative arrangement of the particles. These are the models of Nows I asked you to contemplate earlier. We can model the totality of Nows for this universe by the totality of triangles. It will be very helpful to start thinking about this totality of triangles, which is actually an infinite collection, as if it were a country, or a landscape.