I suspect that the main difficulties arise because an important aspect of history has been ignored. Even if history is a unique succession of instants, modelled by a path in configuration space, it can be studied only through records, since historians are not present in the past. This aspect of history is not captured at all by a path. All the solutions of a Newtonian system correspond to unique paths, but they very seldom resemble the one history we do experience, in which records of earlier instants are contained in the present instant. This simply does not happen in general in Newtonian physics, which has no inbuilt mechanism to ensure that records are created. It is a story of innumerable histories but virtually no records of them. (1 discussed this at the end of Chapter 1.)
In thinking about history, I believe we should reverse the priorities. Up to now the priority has been to achieve successions of states and to assume that records will somehow form. But nothing in the mechanisms that create successions ensures that records of them will be created. Now a record is a configuration with a special structure. Quantum mechanics, by its very construction, makes statements about configurations: some are more probable than others. This is especially apparent in the quantum mechanics of the stationary states of atoms and molecules. It determines their characteristic structures. In contrast, there is no way that quantum mechanics can be naturally made to make statements about histories. It is just not that kind of theory.
It is also interesting that classical physics makes only one crude distinction. Either a history is possible because it satisfies the relevant laws, or it is impossible because it does not. The possible continuous curves in the configuration space are divided into a tiny fraction that are allowed and the hugely preponderant fraction that are not. It is yes or no. Quantum mechanics is much more refined: all configurations are allowed, but some are more probable than others. By its very nature, quantum mechanics selects special configurations – those that are the most probable. This opens up the possibility that records, which are special configurations by virtue of their structure, are somehow selected by quantum mechanics. This is the possibility I want to explore in this and the following chapter. The aim is to show that quantum mechanics could create a powerful impression of history by direct selection of special configurations that happen to be time capsules and therefore appear to be records of history. There will be a sense in which the history is there, but the time capsule, which appears to be its record, will be the more fundamental concept.
THE CREATION OF RECORDS: FIRST MECHANISM
In the same conference in Oxford in 1980 at which Karel Kuchař spoke about time in quantum gravity, John Bell gave a talk entitled ‘Quantum mechanics for cosmologists’. Among other things, he considered how records arise. This led him to describe a cosmological interpretation of quantum mechanics in which there are records of histories but no actual histories. Perhaps not surprisingly he rejected this as too implausible, but his account of how records arise is most illuminating. I shall reproduce it here in somewhat different terms, and then use it to propose an interpretation that is quite close though not identical to his, since Bell still assumed that the wave function of the universe would evolve with time. If this assumption is removed, as I believe it must be, Bell’s interpretation becomes less implausible.
Bell illustrated how records are created in quantum mechanics by showing how elementary particles make tracks in detection devices. The essential principles had already been published, by Nevill Mott in 1929 and Heisenberg in 1930. As far as I am concerned, their work is more or less the interpretation of quantum mechanics, but surprisingly few people know about it.
It was stimulated by the Russian physicist George Gamow’s theory of radioactive decay, put forward in 1928, in which alpha particles escape from radium nuclei by a process called tunnelling. The only detail we need to know is that Gamow represented an escaping alpha particle by means of an expanding, spherical wave function surrounding a radium nucleus. In accordance with the standard quantum interpretation, there is then a uniform density of the probability for finding the alpha particle all round the nucleus. In my pictorial analogy, blue mist spreads uniformly from the nucleus.