But this view must be challenged. It belongs to a mindset that holds the world either to be classical in its entirety, or to have quantum objects within the old classical framework of space and time. How slow we are to move out of old quarters! All the evidence indicates that anything dynamical must obey the rules of quantum mechanics even if it appears classical to our senses. But Einstein made space dynamical – that is the lesson of geometrodynamics taught us in detail by Dirac; by Arnowitt, Deser and Misner (ADM); and by Baierlein, Sharpe and Wheeler (BSW). When space submits to the quantum, as it surely must, the last vestige of a created but persisting framework is lost. Moreover, the transition from the classical world we see to the quantum world that underlies it is fixed in its broad outlines. All we need do is put together the two things that go into quantization – a classical theory and the rules to quantize it – and see what comes out.
The central insight is this. A classical theory that treats time in a Machian manner can allow the universe only one value of its energy. But then its quantum theory is singular – it can only have one energy eigen-value. Since quantum dynamics of necessity has more than one energy eigenvalue, quantum dynamics of the universe is impossible. There can only be quantum statics. It’s as simple as that!
In Part 1 I mentioned the dichotomy in physics between laws and initial conditions. Most equations in physics do not by themselves give complete information, they only put limits on what is possible. To arrive at some definite prediction, further conditions are necessary. Neither Newton’s nor Einstein’s equations tell us why the universe has its present form. They have to be augmented by information about a past state. We could invoke a deity in the way Einstein was wont, who goes through two steps in creating the universe. First, laws are chosen, then an initial condition is added. Many people have wondered whether this is a permanent condition of physics.
The stationary Schrödinger equation is quite different in this respect. It obviously cannot have initial conditions, since it is a timeless equation. It does not require boundary conditions, either. Let me explain what this means. There are many equations in physics which describe how quantities vary in space without there being any change in time. Such equations can have many different solutions, and to find the one that is applicable in a specific case, mathematicians often stipulate the actual values the solution must have at the boundary of some region. This stipulation is what is called a
Now, my suggestion is this. There are no laws of nature, just one law of the universe. There is no dichotomy in it – there is no distinction between the law and supplementary initial or boundary conditions. Just one, all-embracing static equation. We can call it the