In Chapter 14 I described how molecules appear in the Schrödinger picture: as immense collections of all the configurations they could conceivably have, with the blue mist of the quantum probability strongly concentrated on the most probable configurations. These most probable configurations, generally clustered around a single point in Q, are the ones represented by the ball-and-strut models. I can now begin to make good my claim that Schrödinger found the laws of creation. His stationary equation determines the structures – indeed, creates the structures – of all these amazing atoms and molecules that constitute so much of the matter in the universe, our own bodies included. The equation does it by determining which structures are probable. But I mean creation not only in this sense of the structure of atoms and molecules, but in an even deeper one. The full explanation is still to come, but we are getting closer to our quarry.
QUANTUM MECHANICS HOVERING IN NOTHING
We must now see if we can dispense not only with time but also with absolute space in quantum mechanics. In a timeless system the energy
However, a lack of ‘self-containment’ shows up in the curvature number. To find it, we must know how
We are now coming to another critical point. We have seen that in classical physics the action is a kind of ‘distance’ between two configurations that are nearly but not exactly the same. Absolute space is an auxiliary device that makes it possible to define such ‘distances’. This is why angular momentum exists in classical and quantum physics. However, in Chapter 7 we found an alternative definition of ‘distances’ that works in the purely relative configuration space – in Platonia – and owes nothing to absolute space. They are defined by the best-matching procedure, which uses relative configurations and nothing else. In classical physics, this makes it possible to create a purely relative and hence self-contained dynamics. We also found that a sophisticated form of best matching lies at the heart of general relativity. Best matching would appear to be a basic rule of the world.
It is therefore very tempting to see whether it can be applied in quantum mechanics. What we would like to do is establish rules for operating on wave functions defined solely on the relative configuration space. For example, for three bodies we would want to eliminate the six dimensions associated with their position and orientation in absolute space, and work just with the sides of the triangle. We shall then have a wave function defined on a three-dimensional Platonia. For that, we shall want to calculate a curvature number and a potential number. The latter will present no difficulty, since it will be the same as in ordinary quantum mechanics. The difficulty is in the curvature number. What, after all, is curvature? For any given curve, it is the rate at which its slope changes. But the key thing about a rate of change is that it is with respect to