First, in classical relativity, space-time represents all reality – the complete universe. In contrast, a quantum state by itself has no definite meaning until the strategic decision – say, to measure position or momentum – has been taken. The state acquires its full meaning only in conjunction with actual measuring apparatus outside the system. The system must interact with the apparatus to reveal its latent potentialities. At present, its interaction with an apparatus – essentially the rest of the universe – is not fully understood. The quantum state by itself is only part of the story. It may be premature to draw conclusions about the quantum universe from incomplete quantum descriptions of subsystems of it.
Second, quantum mechanics as presently formulated needs an external framework. Indeed, the most basic observables, those for position, momentum and angular momentum, all correspond to the ‘lent’ properties mentioned in the discussion of the EPR paradox. They could not exist without the framework of absolute space, and Mach’s principle suggests strongly it is determined by the instantaneous configurations of the universe. Time, moreover, plays an essential role in quantum mechanics yet stands quite outside the description of the quantum state. But we saw in Chapter 6 that time is really just a shorthand for the position of everything in the universe, so the configurations of the universe can be expected to play an essential and direct role in a quantum description of the universe. I cannot see how we can hope to understand the external framework of current quantum theory unless we put them into the foundations of quantum cosmology. This is what leads me to the dualistic picture of Platonia, the collection of all possible configurations of the universe, and the completely different wave function, conceived of as ‘mist’ over Platonia. In the language of Everett’s theory, this introduces a preferred basis. In answer to the question ‘what is real?’, I answer ‘configurations’. My book is the attempt to show that they explain both time and the quantum – as different sides of the same coin.
CHAPTER 15
The Rules of Creation
THE END OF CHANGE
In this chapter I am going to go into a little detail about how wave mechanics works. This means looking at two equations Schrödinger discovered in 1926 which, Dirac remarked, explained all of chemistry and most of physics. You will need to absorb enough to understand the bearing of the first part of the book on the structure of quantum cosmology. That is the goal; I hope you will find it is worth the effort. I believe it will show us how creation works. No theory can ever explain why anything is – that is the supreme mystery. But theory may be able to tell us why one thing rather than another is created and experienced. What is more, I believe that in every instant we experience creation directly. Creation did not happen in a Big Bang. Creation is here and now, and we can understand the rules that govern it. Schrödinger thought he had found the secret of the quantum prescriptions. Properly understood, what he found were the rules of creation.
Let us get down to business. We shall be considering how the wave function ψ changes. In quantum mechanics, this is all that does change. Forget any idea about the particles themselves moving. The space Q of possible configurations, or structures, is given once and for all: it is a timeless configuration space. The instantaneous position of the system is one point of its Q. Evolution in classical Newtonian mechanics is like a bright spot moving, as time passes, over the landscape of Q. I have argued that this is the wrong way to think about time. There is neither a passing time nor a moving spot, just a timeless path through the landscape, the track taken by the moving spot in the fiction in which there is time.
In quantum mechanics with time, which we are considering now, there is no track at all. Instead, Q is covered by the mists I have been using to illustrate the notion of wave functions and the probabilities associated with them. The red and green mists evolve in a tightly interlocked fashion, while the blue mist, calculated from the other two, describes the change of the probability. All that happens as time passes is that the patterns of mist change. The mists come and go, changing constantly over a landscape that itself never changes.