Figure 42 again shows our two-particle Q and two different quantum states. In the
Figure 42 Entangled (top) and unentangled (bottom) states for two particles (black and white triangles).
Much more interesting is the
A particular feature of entangled states should be noted. Particles normally interact (affect each other) when they are close to each other. For the two-particle Q in Figure 39, the particles coincide on the diagonal line, and the region in which the particles are close to each other and can interact strongly is therefore a narrow strip around that line. However, the wave function of an entangled state may be located completely outside this region – the particles may be very far apart when one of them is observed. Yet the other particle is apparently immediately affected. It can jump to one or other of two hugely different possibilities. Moreover, if the ‘ridge’ in the top part of Figure 42 is made thinner and thinner, shrinking to a line, then position determination of one particle immediately determines the position of the other to perfect accuracy. Such situations are not easy to engineer for position measurements (and in general will not persist because of wave-packet spreading), but there are analogous situations for momentum and angular-momentum measurements that are easy to set up.
The facts discussed in Box 12 are immensely puzzling if we wish to find a physical and causal mechanism to explain how measurement on one particle can have an immediate effect on a distant particle. As I have already explained, innumerable interference phenomena indicate that, in some sense, the particles are, before any measurement is made, simultaneously present wherever ψ extends. Since there is no restriction on the distance between the particles, any causal effect on the second particle after the first has been observed would have to be transmitted instantaneously. However, relativity theory is supposed to rule out all causal effects that travel faster than the speed of light. Moreover, in the mid-1980s Alain Aspect in Paris performed some very famous experiments in which such wave-function collapses were tested, and the predictions of quantum mechanics confirmed with great accuracy. The experiments were so arranged that any physical effect would have had to be transmitted faster than the speed of light to bring about the collapse.
The situation is actually delicate and intriguing. Relativity absolutely prohibits the transmission of
So far, we have considered only position measurements on a two-particle system. But we can also consider many other measurements, of momentum, for example. Given ψ in Q, we directly obtain predictions for positions. But Dirac’s transformation theory enables us to pass to the complementary momentum space, which gives direct predictions for momentum measurements. If the wave function is tightly entangled with respect to momentum, measuring the momentum of particle 1 would immediately tell us the momentum of particle 2. And this despite the fact that before any measurements are made there is considerable uncertainty about the momenta of the particles. However, what is certain is that they are entangled, or correlated. This brings us to the EPR paradox.
THE EPR PARADOX