Читаем Тестовый контроль в образовании полностью

В IRT вводится представление о существовании взаимосвязи между наблюдаемыми результатами тестирования и латентными качествами испытуемых, такими как уровень учебных достижений по предмету на момент тестирования. В отличие от классической теории тестов, где индивидуальный балл тестируемого рассматривается как постоянное наблюдаемое число Xi,  в IRT латентный параметр трактуется как некоторая переменная (латентная переменная), начальное значение которой получается непосредственно из эмпирических данных тестирования (например, первичный балл). При этом латентные параметры (уровень подготовленности испытуемого i и уровень трудности задания j) рассматриваются как результат взаимодействия двух множеств значений, порождающих наблюдаемые итоги выполнения теста. Элементами первого множества являются значения латентного параметра i – уровня знаний N испытуемый: (i = 1, 2, ..., N). Второе множество образуют значения латентного параметра i, соответствующего разной трудности заданий теста (j = 1, 2, ..., n). На практике всегда ставится задача оценить по ответам испытуемых значения параметров и . Для ее решения выбирается вид соотношения между этими параметрами (математическая модель).

Оказалось, что эмпирически наблюдаемые результаты Xi и соответствующие им латентные значения уровня подготовленности испытуемых i связаны нелинейно. Переменный характер измеряемой величины трудности задания j также указывает на возможность последовательного приближения ее к объективным оценкам параметров при помощи итеративных методов в процессе апробации. Выбором математической модели установливается взаимосвязь между эмпирическими результатами тестирования и значениями латентных переменных: – уровень знаний испытуемых и – уровень трудности задания.

Однопараметрическая модель датского математика Г. Раша (G. Rasch) устанавливает зависимость между уровнем подготовленности испытуемого (i) и трудностью заданий (j) [248]. Он предложил ввести это соотношение в виде разности между параметром уровня знаний испытуемых и параметром трудности заданий теста: i-j. При этом предполагается, что оба параметра оцениваются на одной и той же шкале логитов. Функция успеха, или вероятность правильного ответа Рj при тестировании задается простой логистической моделью:

где параметром является разность (-j), абсолютная величина которой представляет в логитах расстояние между уровнем знаний данного испытуемого и уровнем трудности данного задания. Если эта разность велика и отрицательна, то такое трудное задание бесполезно для измерения уровня знаний данного тестируемого, в то же время если эта разность велика и положительна, то задание тоже не представляет интереса, оно неэффективно, так как такой уровень трудности данным тестируемым уже хорошо освоен.

Из логистической функции видно, что Pj растет с ростом параметра испытуемых, так как чем выше уровень знаний тестируемых, тем выше вероятность правильного ответа на–е задание теста. Взаимосвязь между этими параметрами хорошо просматривается по характеристической кривой–го задания теста, вид которой представлен на рис. 7. Точка перегиба соответствует равенству уровня знаний тестируемого и уровня трудности тестового задания, =j, вероятность правильного ответа при этом равна 0,5. Вероятность правильного ответа для хорошо подготовленных испытуемых стремится к 1, а для плохо подготовленных – к 0. Увеличение трудности задания на некоторую константу с 0 смещает характеристическую кривую вправо, с прежней вероятностью на такое задание теперь сможет ответить тестируемый с другим уровнем знаний, равным ( + с).

В однопараметрической модели вероятность правильного ответа на задания выражается посредством логистической функции, после введения которой симметрично возникла математическая модель, описывающая вероятность правильного ответа в зависимости от трудности заданий [196]. Аналогично по формуле рассчитывается вероятность Рi правильного ответа i – го испытуемого на разные по трудности задания теста:

Рис. 7. Характеристическая кривая тестового задания

Вероятность правильного выполнения i-м испытуемым будет убывающей функцией в зависимости от трудности заданий. График функции Рi, или график индивидуальной кривой испытуемого, показан на рис. 8.

Рис. 8. Индивидуальная кривая испытуемого: а – теоретическая, уровень знаний 0,5; б – эмпирическая, уровень знаний 0,6

В точке перегиба кривой вероятность правильного ответа, как и на характеристической кривой задания, равна 0,5. В процессе обучения, по мере накопления знаний, индивидуальная кривая испытуемого смещается вправо.

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука
Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы

Все жанры