Каждое измерение (ответ на вопрос) включает в себя как истинное значение, так и частично не контролируемую, случайную погрешность. Для эффективного функционирования контрольно–оценочной системы необходимы высокая надежность и валид–ность педагогических измерений. Под надежностью понимают точность измерений, а также устойчивость результатов к действию случайных факторов. Тест считается надежным, если он обеспечивает высокую точность измерений, а также дает при повторном выполнении на той же выборке близкие результаты при условии того, что подготовка испытуемых не изменилась за время до повторного выполнения теста.
На протяжении десятилетий вопросы надежности исследовались многочисленными теоретиками и практиками в области педагогических измерений. Особо следует отметить работу R.L. Linn [241], в которой рассматриваются не только процедуры оценки надежности, но и методологические вопросы обоснования качества тестовых измерений. Его подход оправдан тем, что в требовании проверки теста на надежность реализуется важная идея методологического характера, связанная с неизбежностью ошибок измерения, порождаемых группой случайных факторов. В самой общей трактовке надежность тестов можно рассматривать как характеристику существующих различий между результатами педагогических измерений и истинными баллами испытуемых (подготовленностью) в той мере, в какой эти различия порождаются случайными ошибками измерения. В теории педагогических измерений ошибка трактуется как статистическая величина, отражающая степень отклонения наблюдаемого балла от истинного балла ученика или студента.
Существование ошибки измерения закладывается и привносится в теорию педагогических измерений основными аксиомами классической теории тестов. К числу наиболее важных аксиом, закладывающих научный фундамент обоснования теории надежности тестов, можно отнести равенство:
где
Использование аксиом и предположения о нормальном характере распределения статистик по тесту приводит к фундаментальному соотношению классической теории тестов, связывающему дисперсию наблюдаемых баллов Sx2
где Sx2 , в свою очередь, состоит из двух слагаемых, одно из которых – наиболее важная общая часть дисперсии, составляющая основу корреляционных и дисперсионных методов исследования качества теста, а другое – специфическая часть. Принято счи тать, что общая часть определяется различиями в подготовке испытуемых, в то время как специфическая часть дисперсии порождается различиями в содержании заданий теста. Разделив на Sx2 почленно равенство, получим
Sx2/ Sx2
где следует понимать как среднее арифметическое дисперсий ошибок для различных испытуемых из генеральной совокупности, поскольку ошибка при оценке истинного балла будет меняться для различных испытуемых группы.
Естественно предположить, что чем ближе Sx2 к Sт2 , тем выше корреляция между множеством наблюдаемых баллов
Одним из способов вычисления надежности суммарной шкалы является разбиение суммарной шкалы случайным образом на две половины. Если суммарная шкала совершенно надежна, то следует ожидать, что обе части абсолютно коррелированы (т.е.
rсб =
где rсб – коэффициент надежности;
Если используемая шкала коррелирует с измеряемым показателем, то можно говорить о достоверности шкалы, т.е. о том, что она действительно измеряет то, для чего создана, а не что–нибудь другое. Построение достоверной выборки – это продолжительный процесс, при котором исследователь изменяет шкалу в соответствии с различными внешними критериями, теоретически связанными с той концепцией, для подтверждения которой и строится шкала. Фактически достоверность шкалы всегда ограничивается ее надежностью, поэтому важной составляющей анализа данных является корреляция, представляющая собой меру взаимозависимости переменных. При заданной надежности двух связанных между собой измерений (т.е. шкалы и исследуемого показателя) можно оценить корреляцию между истинными значениями разных измерений. Это изменение корреляции обусловлено либо значениями, задаваемыми пользователем, либо реальными исходными данными.