Читаем Термодинамика реальных процессов полностью

Интересно, что вопрос о физическом содержании хорошо всем известного понятия силы с давних времен занимает умы ученых. Отголоски былых горячих споров, иногда доходивших до рукоприкладства, можно встретить в тех дискуссиях, которые не утихают до наших дней при попытках определить смысл силы инерции или центробежной силы. При этом силу-меру иногда отождествляют с той сущностью, мерой которой служит сила, то есть считают, что сила это и есть сама сущность. Другой пример неправильного понимания силы являют собой выражения типа: «сила действует», «под действием силы» и т.п. Я тоже иногда употребляю подобные слова. Однако в таких случаях надо отдавать себе ясный отчет в том, что сила-мера как таковая не способна действовать, ибо мера не вещественна. Действует только силовое вещество, и интенсивность этого действия измеряется в единицах меры-силы.

Теперь должно быть ясно, что сила есть универсальная количественная мера - и только мера! - интенсивности (качества) простого силового поведения вещества, она выполняет роль меры N5  в соотношениях (26) для ансамбля простых явлений. Это поведение заключается в притяжении и отталкивании различных форм явлений. При этом требуется четко различать силу как меру и ту материальную сущность - вещество силового взаимодействия, или нанополе, - которая стоит «за спиной» силы [ТРП, стр.87-88].

 6. Универсальная мера силового взаимодействия, или работа.

Зная меры экстенсивности dx и интенсивности Рх  простого силового (механического) взаимодействия, нетрудно найти комплексную характеристику, которая с количественной стороны определяла бы это взаимодействие в целом. Очевидно, что ни одна из мер в отдельности не в состоянии отразить сути, а значит, не может служить мерой этого взаимодействия. Здесь нам опять придет на помощь метод эстафеты - передачи в ОТ известных понятий.

Соответствующая комплексная характеристика была известна уже Архимеду, который сформулировал свое знаменитое золотое правило механики. Эта характеристика именуется работой, обозначается через dQx и измеряется в джоулях. Она равна произведению силы Рх (Н) на перемещение dx (м), то есть

dQx = Рх dx Дж      (28)

Отсюда видно, что работа есть универсальная мера, так как обе составляющие ее меры - сила и перемещение - тоже универсальны.

Работа представляет собой количественную меру простого силового взаимодействия между ансамблем и квантами, то есть определяет количество воздействия квантов на ансамбль и наоборот. Она может быть как положительной, так и отрицательной: все зависит от направления силы - к ансамблю или от него. При этом образование ансамбля и его распад сопровождаются совершением работ прямо противоположных знаков.

Очень важно подчеркнуть, что работа совершается именно в процессе образования или распада ансамбля, то есть в процессе переноса квантов. При отсутствии перемещения квантов (dx = 0) работы нет (dQx = 0). Следовательно, в готовом и неподвижном ансамбле работа равна нулю, ибо там нет перемещения. В связи с этим уместно вспомнить следующие слова великого Ньютона: «Сила проявляется единственно только в действии и по прекращении действия в теле не остается».

Таким образом, в теле (ансамбле) нет работы, перемещения и силы. Но зато есть явление силового взаимодействия, обеспеченное соответствующим веществом, оно цементирует кванты в единое целое и одновременно берет на себя заботу о том, чтобы при распаде ансамбля вновь совершалась работа. Иными словами, благодаря этому явлению ансамбль вначале как бы аккумулирует внешние воздействия со стороны присоединяющихся квантов вещества. При распаде ансамбля, наоборот, аккумулированные воздействия вновь возвращаются квантам в виде работы противоположного знака. Необходимо с количественной стороны определить это свойство ансамбля, то есть найти соответствующую меру [ТРП, стр.88-89].

7. Мера количества поведения вещества.

Мы убедились, что ансамбль простых явлений формируется в процессе силового поведения квантов, однозначно определяемого работой взаимодействия dQх . Очевидно, что количество поведения, аккумулированного ансамблем, должно быть как-то связано с работой dQx , но как именно, мы пока сказать не можем, это выяснится лишь в ходе последующих рассуждений. Обозначим меру количества поведения вещества ансамбля через U. Эта величина соответствует характеристике N4  в основном уравнении ОТ (14) применительно к ансамблю простых явлений (26), то есть

N4 = U        (29)

Таким образом, у нас есть две главные меры, входящие в уравнение (14). Согласно этому уравнению, мера N4 из равенства (29) является функцией экстенсора NI из соотношения (27). Поэтому все интересующие нас сведения о свойствах величины U мы легко можем получить путем анализа основного уравнения, записанного через новые меры (27) и (29). Заранее можно лишь сказать, что мера U, подобно работе, перемещению и силе, должна быть в определенном смысле универсальной.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки