Читаем Термодинамика реальных процессов полностью

Анализ Вселенной привел нас к большому числу уровней мироздания, объекты которых сильно различаются значениями своих экстенсоров. Теперь при выборе конкретных форм явлений мы должны расчленять по признаку величины экстенсора не Вселенную в целом, а только ее определенные интересующие нас количественные уровни. Задача расчленения отдельного уровня оказывается неизмеримо легче, чем общая проблема расчленения необозримой Вселенной, ибо в рамках каждого данного уровня экстенсор может вменяться лишь в некотором ограниченном интервале, определяемом свойствами самого уровня. Одновременно резко сокращается число наиболее важных характеристик явления и связей между ними, то есть число действующих законов. Однако в общем случае в конечном интервале изменения экстенсора может поместиться невообразимое множество его значений и, следовательно, каждый количественный уровень мироздания в принципе может содержать огромное количество разных форм явлений.

Совершенно ясно, что на любом выделенном уровне миро здания существуют свои частные наипростейшая и наисложнейшая формы явлений. Экстенсоры этих форм имеют определенные наименьшие и наибольшие значения. Задавая экстенсору последовательный ряд значений в пределах от минимального до максимального, можно перебрать все множество частных форм явлений данного уровня. Именно такой последовательный ряд усложняющихся форм явлений составляет предмет наших забот и исканий.

В настоящее время мы не знаем ни одного полного ряда ни для одного из уровней мироздания. Нам известны лишь разрозненные конкретные формы явлений, принадлежащие различным уровням и рядам. Например, в микромире отдельными формами явлений служат конкретные элементарные частицы, атомы и молекулы. В макромире можно упомянуть конкретные неорганические тела, растения, животных. В мегамире существуют конкретные звезды различного класса и т. д. Анализ всех известных конкретных форм явлений позволяет сделать еще несколько выводов, которыми фактически исчерпываются возможности метода анализа [ТРП, стр.49-50].

5. Формы разного рода.

Прежде всего мы замечаем, что на любом уровне мироздания все многочисленные конкретные формы явлений могут быть сгруппированы по определенным родовым признакам, существенно отличающим один род от другого. Например, в микромире род элементарных частиц сильно разнится от рода атомов и рода молекул. В макромире можно различать роды минералов, растений, вирусов, бактерий, человекообразных обезьян, обществ и т.д. То же самое можно сказать о звездах и туманностях в мегамире [ТРП, стр.50].

6. Формы разного вида.

В общем случае каждая совокупность форм явлений данного рода распадается на множество одноименных форм разного вида. Например, род элементарных частиц включает в себя электроны, позитроны, протоны, нейтроны и другие частицы. В макромире существуют разные виды минералов, растений, вирусов, бактерий, человекообразных обезьян; обществ. В мегамире есть немало видов звезд и туманностей [ТРП, стр.50].

7. Вариации форм данного вида.

Существует большое множество вариаций любой конкретной формы явления данного вида. Например, электроны могут отличаться один от другого по каким-то своим признакам, что станет ясно из дальнейшего изложения. На свете нет двух совершенно одинаковых людей. Точно так же в пределах своего класса не существует двух абсолютно одинаковых звезд и т.д.

Множественность вариаций индивидуальных признаков на уровне единичной формы явления можно определить термином изменчивость. Именно изменчивость делает природу бесконечно разнообразной и наделяет каждое конкретное явление способностью приспосабливаться ко всевозможным условиям существования, а также свойством устойчивости в определенном диапазоне изменения этих условий.

Из всего сказанного должно быть ясно, что Вселенная бесконечно разнообразна на любом количественном уровне мироздания. Она неисчерпаема даже в пределах любого данного конкретного вида формы явления. Все это невообразимое количество разнообразных реальных форм явлений привести в определенную систему не так-то просто. При желании с этой целью можно было бы воспользоваться, например, достаточно развитыми общими теориями систем (ОТС) М. Месаровича [56], А.И. Уемова [78], Ю.А. Урманцева [72, с.38-130] и т.д.; в частности, много точек соприкосновения с ОТ можно найти в теориях А.И. Уемова и Ю.А. Урманцева, однако в этом нет особой необходимости. Уместно также добавить, что конкретно-научные проработки ОТ неизбежно должны повлечь за собой известную корректировку всех ОТС, в особенности такая потребность возникает в связи с новыми трактовками в ОТ понятий пространства и времени.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки